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2. Governing equations - Which equations do we need to solve?

• Transient or steady-state?

• 2D or 3D?

• Incompressible or compressible flow?

• Viscous or non-viscous?

• Single-phase or multiphase?

• What about turbulence?
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Conservation Laws

𝑑𝑚

𝑑𝑡
𝑠𝑦𝑠𝑡.

= 0

𝑑 𝑚𝑼

𝑑𝑡
𝑠𝑦𝑠𝑡.

= ∑𝐹

Mass:

Momentum:

The mass within a material region is 
constant

The time rate of change of the linear momentum of a 
material region is equal to the sum of the forces 
acting on the region

Newtons 2nd laws:

𝑚 ⋅ 𝒂 = ∑𝐹
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• Example from undergraduate physics, ∑𝐹 = 𝑚 ⋅ 𝒂

Conservation Laws Newtons 2nd law

𝑎 =
1

3
⋅ 𝑔

Person has a weight of, 𝑊 = 75𝑘𝑔.

Elevator accelerates upwards 1/3 𝑔

What is the weight N in the bottom
showing in kg? 

N
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Example – Euler vs. Lagrangian

𝐶𝑉1

• Lagrange: Follow trajectory of particle with fixed mass

• Euler: Calculate the forces exerted on a CV

𝑉
𝑚
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Conservation Laws

It is not in our interest to follow the trajectory of a fluid particle. We wish to 

define a non-moving fluid environment.
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Conservation Laws • Mass is conserved:

Fluid through a pipe – variable, moving CV

CV

𝑑

𝑑𝑡
න
𝐶𝑉

𝜌 𝑑𝑉 + න
𝑆𝑢𝑟𝑓

𝜌 𝑽𝒓 ⋅ 𝒏 𝑑𝐴 = 0

Mass inside the CV Mass flux crossing the boundaries
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Conservation Laws • Mass is conserved:

CV

𝑑

𝑑𝑡
න
𝐶𝑉

𝜌 𝑑𝑉 → න
𝐶𝑉

𝜕 𝜌

𝜕𝑡
𝑑𝑉

Fixed CV

Fluid through a pipe – fixed, non-moving CV
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Conservation Laws – Mass

න
𝐶𝑉

𝜕𝜌

𝜕𝑡
𝑑𝑉 + න

𝑆𝑢𝑟𝑓

𝜌 𝑽 ⋅ 𝒏 𝑑𝐴 = 0

Transform the last integral to a volume integral (Gauss’ theorem):

න
𝑐𝑣

𝜕𝜌

𝜕𝑡
+
𝜕 𝜌𝑢𝑖
𝜕𝑥𝑖

𝑑𝑉 = 0

By letting 𝑑𝑉 → 0 we get the continuity equation in differential 

(local) form



9

Example Mass conservation

𝑑

𝑑𝑡
න
𝐶𝑉

𝜌 𝑑𝑉 + න
𝑆𝑢𝑟𝑓

𝜌 𝑽𝒓 ⋅ 𝒏 𝑑𝐴 = 0

• One-dimensional inlet:

න
𝑆𝑢𝑟𝑓

𝜌 𝑽𝒓 ⋅ 𝒏 𝑑𝐴 = ሶ𝑚𝑖𝑛 ⋅ 𝑉𝑖𝑛 = ρ𝐴𝑉 𝑖𝑛 ⋅ 𝑉𝑖𝑛

Balloon
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Momentum on integral form

𝑑 𝑚𝑼

𝑑𝑡
𝑠𝑦𝑠𝑡

= ∑𝐹 =
𝑑

𝑑𝑡
න
𝐶𝑉

𝑽 𝜌 𝑑𝑉 + න
𝐶𝑆

𝑽 𝜌 𝑽 ⋅ 𝒏 𝑑𝐴

Consider surface forces S and body forces, B

Using Gauss’ theorem and assume constant CV volume:

න
𝑐𝑣

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+
𝜕 𝜌𝑢𝑗𝑢𝑖

𝜕𝑥𝑗
𝑑𝑉 = න

𝑐𝑣

𝜌𝐵𝑖 𝑑𝑉 +න
𝑐𝑠

𝑆𝑖 𝑑𝐴
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• Uniform velocity and density over the inlet / exit:

∑𝐹 =
𝑑

𝑑𝑡
න
𝐶𝑉

𝑽 𝜌 𝑑𝑉 + ∑ ሶ𝑚𝑽𝑖 𝑜𝑢𝑡 − ∑ ሶ𝑚𝑽𝑖 𝑖𝑛

• Steady, one inlet and outlet:

∑𝑭 = ሶ𝑚 𝑽𝑖𝑛 − 𝑽𝑜𝑢𝑡

𝐹𝑃

𝐹𝑃

𝜏

Conservation Laws – one-dim. simple form
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Conservation Laws – one-dim. simple form

𝑑𝑚

𝑑𝑡
𝑐𝑣

= ∑ ሶ𝑚𝑖𝑛 − ∑ ሶ𝑚𝑜𝑢𝑡

CV

∑𝐹 = ∑ ሶ𝑚𝑢 𝑖𝑛 − ∑ ሶ𝑚𝑢 𝑜𝑢𝑡

Mass:

Momentum:

F
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Discuss the difference of forces:

Which forces are important in both cases?
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Forces – Shear force
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Forces – which forces act in a fluid?

Surface forces are pressure and viscous stress
Body forces are gravity, and other external forces

Stress is divided into pressure 𝑝 (1x3) and viscous stress 𝜏𝑖𝑗 (3x3):
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Momentum on differential form (2 of 3 
equations)

𝜕 𝜌𝑢

𝜕𝑡
+
𝜕 𝜌𝑢𝑢

𝜕𝑥
+
𝜕 𝜌𝑣𝑢

𝜕𝑦
+
𝜕 𝜌𝑤𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑥
+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

+ 𝜌𝑓𝑥

𝜕 𝜌𝑣

𝜕𝑡
+
𝜕 𝜌𝑢𝑣

𝜕𝑥
+
𝜕 𝜌𝑣𝑣

𝜕𝑦
+
𝜕 𝜌𝑤𝑣

𝜕𝑧
= −

𝜕𝑝

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑓𝑦

Temporal Convection Pressure Viscous Other 
Forces
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Navier-Stokes equations

• Newtonian fluid (simple molecules, water, oil, air)  Property of the fluid

• Non-Newtonian (salt solutions, blood, ketchup, starch suspensions)

𝛿𝜃 𝛿𝜃

𝜏
𝑢 = 0

𝑢

Strain rate 
𝛿𝜃

𝛿𝑡
proportional to viscous stress. 𝜏 = 𝜇

𝑑𝑢

𝑑𝑦

𝜏 ∝
𝛿𝜃

𝛿𝑡
𝑦



18

Navier-Stokes equations (Full version, 1 of 3 equations)

𝜕𝑢

𝜕𝑡
+
𝜕 𝜌𝑢𝑢

𝜕𝑥
+
𝜕 𝜌𝑣𝑢

𝜕𝑦
+
𝜕 𝜌𝑤𝑢

𝜕𝑧

= −
𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
−
2

3
𝜇𝛻 ⋅ 𝑼 + 2𝜇

𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑦
𝜇

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
+

𝜕

𝜕𝑧
𝜇

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
+ 𝜌𝑓𝑥

Local form !
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• Incompressible flow means 𝛻 ⋅ 𝑼 = 𝟎 →
𝒅𝝆

𝒅𝒕
= 𝟎

• Constant density and viscosity:

Navier-Stokes equations (incompressible version)

𝜌
𝜕𝑢

𝜕𝑡
+
𝜕 𝑢𝑢

𝜕𝑥
+
𝜕 𝑣𝑢

𝜕𝑦
+
𝜕 𝑤𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
+ 𝜌𝑓𝑥

𝜌
𝜕𝑣

𝜕𝑡
+
𝜕 𝑢𝑣

𝜕𝑥
+
𝜕 𝑣𝑣

𝜕𝑦
+
𝜕 𝑤𝑣

𝜕𝑧
= −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
+ 𝜌𝑓𝑦
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• Steady-state

Navier-Stokes equations simplifications

𝜌
𝜕𝑢

𝜕𝑡
+
𝜕 𝑢𝑢

𝜕𝑥
+
𝜕 𝑣𝑢

𝜕𝑦
+
𝜕 𝑤𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
+ 𝜌𝑓𝑥
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• Steady-state

• Non-viscous

Euler equations simplifications

𝜌
𝜕 𝑢𝑢

𝜕𝑥
+
𝜕 𝑣𝑢

𝜕𝑦
+
𝜕 𝑤𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
+ 𝜌𝑓𝑥
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𝜌
𝜕 𝑢𝑢

𝜕𝑥
+
𝜕 𝑣𝑢

𝜕𝑦
+
𝜕 𝑤𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑥
+ 𝜌𝑓𝑥

Can be written: 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
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Euler equations simplifications

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝑓𝑥

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝑓𝑦

𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝑓𝑧
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Bernoulli simplifications

It can be shown that by assuming irrotational flow / integration along a streamline

𝑑
1

2
𝑉2 +

𝑑𝑝

𝜌
+ 𝑔 ⋅ 𝑑𝑧 = 0

Integration gives:

Δ𝑝 +
1

2
𝜌 𝑉2

2 − 𝑉1
2 + 𝜌𝑔 𝑧2 − 𝑧1 = 0
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Bernoulli example

A gravity tank with water is 
emptied. Estimate the force 
necessary to hold the plate.

Assume 𝑉1 = 0 and the static pressure is 
atmospheric at 1 and 2.

What is a necessary condition for the
above assumption to be valid?

Neglect friction.

Diameter of the outlet pipe is 10 cm.

What if the plate is inclined by an angle of
5 degrees?

𝐹 = 𝑋

1

2

15𝑚

𝐷2 = 10 𝑐𝑚.
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• Internal / External Flow

• Stokes flow (creeping flow): 𝑅𝑒 ≪ 1

• Incompressible / compressible

• Poiseuille flow

• Couette flow

Classification of flows - examples
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Classification of flows - examples


