3. Turbulent Flow

- 1. What is turbulence?
 - Phenomenon / Characterization
 - Why is it difficult to model?
- 2. Type of turbulent flows
 - Free turbulence
 - Boundary layers
- 3. Approach to modeling \rightarrow Later

Leonardo da Vinci drawing turbulence

3. Turbulent Flow - Objectives

- 1. Understand the influence of viscosity on flow
- 2. Understand basic differences between turbulent and laminar flow characteristics
- 3. Boundary layer theory

3. Turbulent Flow - Examples

<u>Flow visualization</u> of a turbulent jet, made by <u>laser-induced</u> <u>fluorescence</u>.

3. Turbulent Flow - Intro

https://www.youtube.com/watch?v=1 oyqLOqwnI

3. Turbulent Flow - Definitions

Turbulence is random and chaotic

Not predictable, and the flow development cannot be determined by forehand

Turbulence is a property of the flow

turbulence remains "the most important unsolved problem of classical physics"

3. Turbulent Flow - Intro

In turbulent flow, the velocity and pressure is highly unsteady. Their values are fluctuating

Turbulent flow is characterized by:

- 1. Disorder
- 2. Efficient mixing (Diffusive)
- 3. Vorticity (Irregularly distributed, 3-dimensional)

NB: Vorticity always present in viscous flow, therefore don't think vorticity is only related to turbulence

3. Turbulent Flow - Intro

- Experiments by Osborne Reynolds in 1880's
- Non-dimensional Reynolds number important to determine if flow is turbulent or laminar

"When the velocities were sufficiently low, the streak of colour extended in a beautiful straight line through the tube..."

(from O. Reynolds paper in the 1883)

 Re_{D}

Reynolds' experiments

https://www.youtube.com/watch?v=ontHCul6eB4

3. Turbulence Modeling – Free turbulence

Figure: *Streamwise* density gradient of plane turbulent mixing layer.

Figure: Free shear flow illustrating laminar, transition and turbulent phases in jet flow

3. Turbulence Modeling – Wake flow

Increased momentum exchange between free stream and boundary layer. Delay separation point \rightarrow smaller wake \rightarrow less drag

3. Turbulence modeling – *Turbulent boundary layer*

3. Turbulence modeling – *Turbulent boundary layer*

 \Box N