CHALLENGES FOR USING LNG FUELED SHIPS FOR ARCTIC ROUTES

Henrique M. Gaspar¹, Sören Ehlers¹², Vilmar Æsøy¹, Sandro Erceg², Océane Balland²³, Hans Petter Hildre¹

1 - Aalesund University College, Norway

- 2 Norwegian Univ. of Science and Technology, Norway
- 3 DNV GL, Norway

Jun 2014

Agenda

- ARCTIC ENVIRONMENT
- DESIGN ASPECTS OF SHIPS OPERATING IN ARCTIC ENVIRONMENTS
- LNG AS CLEANER FUEL OPTION
- CHALLENGES IN ICE PERFORMANCE IN VIEW OF
 PROPULSION
- LIFECYCLE MODEL PROPOSITION FOR LNG FUELED SHIPS OPERATING IN THE ARCTIC
- CONCLUDING REMARKS

Arctic Environment

Arctic Challenges

- Ice free season
- Site specific conditions (polar low, drifting ice masses)
- Uncertain prediction models
- Limited visibility (dark winter, foggy simmer)
- Required safety level unwanted pollution
- Polar code as consensus

Arctic and LNG

- Environmental concerns
- LNG as LNG is now introduced as a very clean alternative fuel
- Meet IMO tier III regulations and EEDI
- Design concerns (ice)
- Infrastructure
- Propulsion system
- Ice scenario

Design Aspects for Ships in the Arctic

- Finnish-Swedish Ice Class Rules (FSICR, 2008) – Baltic Sea
- Concern related to hull form, propulsion machinery, ship systems, stability, navigation and communication equipment, supplies and emergency facilities
- Compromise between a classical icestrengthened merchant vessel and an icebreaker
- Feasible domain usually by adding icefeatures to an existing open-water concept rather than modifying an existing icebreaker

Design Aspects for Ships in the Arctic

	uesign considerations		
Item	Considerations		
Structure (hull,	Ice-breaking bow, ice knife at the rudder		
forecastle, poop, deckhouse)	for conventional rudders, sheltered forecastle		
	to prevent icing, deckhouse allowing a close-		
	range view		
Crew facilities (crew	Additional insulation of the		
spaces, service spaces, stairs	superstructure and crew area, crew spaces		
and corridors)	located in areas of low vibrations		
Machinery (engine and	Inlets for cooling must be placed well		
pump rooms, engine casing,	stern		
funnel, steering and thrusters)			
Tanks (fuel oil, lube oil,	Additional capacity required, waste- and		
water, sewage, ballast, voids)	bilgewater-collecting tanks with capacity for		
	30 days or a cleaning system for sewage and		
	domestic water. Ballast tank heating system		
	No tanks containing environmental risk		
	located towards outer hull,	<u>_</u> ,	
	Tank heating systems	Cargo spaces	
Comfort systems (air	Additional heating	Cargo handling	
condition, water and sewage)		(hatches, ramps, cranes,	preve
Exterior decks	Additional heating	pumps)	
(mooring, lifeboat, etc.)		Trim and stability	
			accoi
			be m
		Resistance	
			class
		Propulsion	01435

Table 1. Arctic ship design considerations

	Tank heating systems	Cargo spaces	Additional heating if needed	
air	Additional heating	Cargo handling	Must comply with cold climate to	
<u>;)</u>	Additional basting	(hatches, ramps, cranes,	prevent icing or fracture	
KS	Additional heating	pumps)		
		——— Trim and stability	Stability must take ice interactions into	
			account and specific trim requirements must	
			be met	
		Resistance	Requirements according to target ice	
			class to satisfy performance criteria	
		Propulsion	Ice class determines propeller design	
			and material as well as main machinery	
			output	
		Hull scantlings	Strengthening according to ice class	

LNG Machinery Arrangement

- In general the same machinery arrangement can be applied with LNG fueled engines as for traditional diesel engines.
- Gas fueled engines are designed to "replace" the diesel engines, or as retrofit solutions, where the main differences are related to fuel system.
- The main question is whether the ship shall be 100% LNG fueled, or have a dual fuel (DF)
- DF means that it can be operated on LNG, marine diesel oil (MDO) or heavy fuel oil (HFO) or in a combination
- DF gives more operational flexibility, while pure LNG operation is the most environmental friendly solution.
- For propulsion machinery systems, we find LNG engines mainly in three different machinery configurations: Gas–Mechanical propulsion, Gas-Electric propulsion and Hybrid propulsion systems.

LNG as Cleaner Option

Table 2. Best available technology emission reduction in % compared to MDO

Reduction factors			
compared to	Pure Gas	Dual Fuel*	Dual Fuel
diesel	LBSI	Low pressure	High pressure
CO2	25-30%	20-30%	20-26%
NOx	80-90%	75-90%	30-50%
SOx	>99%	95-99%	95-97%
Particulates	>99%	95-99%	90-95%

* Highest reduction factors for DF obtained with micro pilot ignition

LNG Infrastructure

- Limited infrastructure
- LNG bunkering for ships is currently only available in Norway, Sweden, Korea, and Argentina
- Along the Arctic, the only currently planned bunkering station is in Hammerfest, Norway
- LNG is still not easily accessible as fuel for ships
- The missing link is the development of break bulk facilities, small-scale liquefaction plants and small scale distribution infrastructure

LNG Drivers and Barriers

- LNG as fuel for ships is now a proven and available solution
- There are currently 45 LNG fueled ships, non-LNG carriers or inland waterway vessels, in operation worldwide while another 47 are approved for building (as of 02.01.14)

p				
Drivers	Barriers	Uncertainties		
Reduces NOx, SOx, PM, CO2	High system costs	Rate of bunker grid expansion		
Comply with EEDI	Inadequate LNG bunkering grid	Future LNG fuel prices		
Proven and available solution	Difficult retrofit			
Competitive LNG price	Size of fuel tanks			

Table 3. Drivers, barriers and uncertainties for LNG fueled ships

Propulsion Challenges for Ice

- Higher Speed Higher Thrust Higher ice-loads
- Sufficient hull strengthening, and adequate strength of the propulsion machinery elements
- Proper design of the hull shape, that is, by reducing ice resistance, in combination with the adequate arrangement of the propeller
- Ice-induced loads acting on the propeller, along with increased hydrodynamic loads due to the disturbed wake field, are transmitted to the other elements of the propulsion machinery system led by the main engine
- Efficient propulsion for open water as well

Simulating Future Scenarios for Missions at the Arctic via Epoch-Era

Handling Uncertain Future

Decomposing Context

uncertainties new field development new ECA new market situation low SECA med **NECA** new field 1 high modeling uncertainties: each change in the scenario triggers a new epoch new field 2 known scenario initial set of contracts a new uncertainty triggers a new epoch vector epoch i+1 new field i

Decomposing Designs

Epoch-Era Analysis applied to SDDP

Arctic – Contextual Factors

- Environmental Conditions: weather and ice conditions, as well as the consequences to operability caused by icing, darkness, fog.
- Technology Development: Improve behavior in ice, with advancements in hull structure and propulsion; Improvements in maintenance and reliability of LNG machinery.
- Infrastructure: LNG bunkering installations along the arctic; Support and emergency infrastructure within acceptable range/response time, as well as wider ice-breakers available (breadth limitation).

Arctic – Contextual Factors

- Policy/Regulations: Future regulations may create a new ECA; new rules connect to regional agreements, political factors or instability. LNG regulations towards...
- Market/Risk: Market situation can affect both the use of Arctic routes and LNG fuelled ships. A stronger demand would increase the activity (risky-prone behavior), whilst a weaker demand would lead to more conservative solutions.

Arctic – LNG Case

Epoch Variables

Category	Epoch Variable	Unit	Range	Steps
Season Open	Months Open	months	0-6	7
Environmental	Ice Conditions	Ice Class	none - 1C	4
Regulations	HFO Ban	no/yes	no-yes	2
Regulations	ECA	no/yes	no-yes	2
Risk	Risk Level	Level	low-high	3
			Epoch space (total):	336 epochs

Each epoch variable represents a possible categorial change in a contextual factor, and is used as instrument to the mapping between context parameters and vessel performance.

Design Variables and Attributes

Category	Design Variable	Unit	Range	Steps
Propulsion	Туре	Machinery Type	LNG - Conventional	2
Class	Ice Class	Class	none-1C	4
			Design space (total):	8 designs

Attrbute Name	Units
CO ₂	ton/year
NOX	ton/year
SOX	ton/year
CAPEX _{Machinery}	\$
OPEX _{Machinery}	\$/year

Design Variables and Attributes

Tradespace Evaluation

Epoch Analysis

Epoch 161

Epoch 20

Era Construction

Each era is one possible lifecycle simulated

	Era	Epoch	Years
	Era 1		
\frown	Open 3 Months, yes Ice Class, no HFO/ECA, normal risk	161	3
Era 1 - 10 years	Open 3 Months, yes Ice Class, yes HFO, no ECA, normal risk	164	3
	Open 4 Months, yes Ice Class, yes HFO/ECA, normal risk	215	4
		Total	10

Other methods to construct eras can be based on probailistic distribution of the uncertainties, tunned by stakeholder's stylistic preferences.

Era Construction

Era Analysis

Aalesund University College, Norway Norwegian Univ. of Science and Technology, Norway DNV GL, Norway

Next Steps

- Challenges in three levels:
 - Key dimensioning parameters for fleet development: LNG and Arctic transportation (icefree season, LNG bunker availability, regulations)
 - Ship design characteristics (hull strength , systems integration, propulsion interaction)
 - Propulsion system: dual fuel, technology developments

CHALLENGES FOR USING LNG FUELED SHIPS FOR ARCTIC ROUTES

Questions?

