
1 

•  What is MATLAB 
–  Matrix calculations (MATrix LAB) 
–  Powerful scientific calculator 
–  Programming language 
–  Data analysis tool 
–  Dynamic system modelling and simulation 
–  Control of dynamic systems 
–  Plotting device 

 

MATLAB Introduction 

•  Start MATLAB through the desktop solution 
(desktop.hials.no) 
–  Install the VMware Horizon View Client 
–  Vmware Horizon View HTML access 

•  Getting to know MATLAB and  
the MATLAB GUI 

•  Storing files in separate folders 
 

MATLAB Introduction 



2 

•  Useful commands 
–  doc bring up the built-in documentation 
–  help <cmd> for help with a command (e.g. help sqrt) 
–  clc clears the command window 
–  clear remove all variables from the workspace 
–  close closes the current figure 
–  pwd presemts working directory 
–  dir or ls lists the current directory 
–  what lists the MATLAB specific files 
–  cd changes current directory 
–  path or matlabpath lists the MATLAB search path 
–  addpath adds a directory to the search path 

MATLAB Basics 

•  The GUI can be 
customized in 
various ways 

•  The most important 
windows are 

–  Command window 
–  Editor window 
–  Figure window 

MATLAB Basics 



3 

•  The GUI can be customized in various ways 

MATLAB Basics 

Command window 

Editor window 

Figure window 

Command history window 
Workspace  
window 

Current folder 
window 

•  Pseudo code: average age of the class   
–  Collect data from all students 
–  Sum all the ages 
–  Divide by the number of studentss 

•  Which “Syntax” is it? 
 
•  Do you approve this syntax? 

–  Samle studenter inn fra alle data 
–  Alle summere aldrane 
–  Studenter på antal dele 

MATLAB Basics – Pseudo-code and syntax 

Samle inn data fra alle studenter 
Summere alle aldrane 
Dele på antal studenter 



4 

•  Are you OK with this syntax? 
–  Coletar a idade de todos os estudantes 
–  Somar todos os valores 
–  Dividir pelo numero de estudantes 

•  Another language, another syntax! 
 

MATLAB Basics – Pseudo-code and syntax 

•  Algorithm:  
A set of instructions or procedures for solving a problem 

•  Program:  
The set of instructions within a computer which enables it to 
perform the various tasks required 

•  Code:  
Any collection of computer instructions (possibly with 
comments) written using some human-readable computer 
language, usually as text. 

MATLAB Basics – Algorithm, program and code 



5 

•  Collect data from  
all students 

•  Sum all the ages 

•  Divide by the  
number of students 

Human code   vs  MATLAB code 

all_nam = {‘aa’,’bb’,’cc’} 
all_age = {21, 23, 27} 

 
 

sum_age = sum(all_age) 

 

 

 
num_stud = length(all_age) 
average = sum_age/num_stud 

•  Scalar Variables:      
•  Arithmetic operations : 
 
 
•  Exponentiation: 

  
•  Complicated expressions: 
•  Multiplication is not implicit  

given by parantheses 
•  Clear command window 
 
•  There is a huge number of built-in functions, the list is too long 

to include here, but note that atan(x) and log10(x) 
corresponds to tan-1(x) and log10(x), respectively. 

MATLAB Basics – Variables  

>> a = 3; b=4; 

>> c = a+b; d= c*b; 
>> sin(2*pi)+exp(-3/2) 

>> sind(90) 

>> 4^2; 

>> (3+4*a)^2 

>> ((2+3)*b)^0.1 
>> 3(1+0.7) à gives error 

 

>> clc 

 



6 

•  Examples of elementary functions:      

MATLAB Basics – Variables  

>> x = 9; 

>> sqrt(x),exp(x),log(sqrt(x),log10(x^2+6) 
 ans = 3 

 ans = 8.1031e+03 

 ans = 1.0986 

 ans = 1.9395 
>> x=5*cos(pi/6); y = 6*sin(pi/6); 
>> acos(x/5), asin(y/6) 
 ans = 0.5236 
 ans = 0.5236 
>> pi/6 
 ans = 0.5236 

 
 

1.  Arithmetic operations      
 
 
 
(Answers: 1.0323, 1.0323, 0.1180)   

2.  Exponentials and logarithms 
 
 
 
(Answers: 20.0855, 3, 1.3029, 5) 

3.  Trigonometric operations 
 
 
 
(Answers:  0.5, -1, 1.6331E16, 1) 
 
 
 
 

MATLAB Basics – Exercise 1 

Compute the following expressions 



7 

•  Arrays 
1.  Matrix of numbers (double or complex) 
2.  Cell array of objects (more advanced structures) 

MATLAB Basics 

•  Row vectors 
–  Variables inserted between brackets and 

separated by commas or spaces 
 
>> row = [1 2 5.4 -6.6] 
>> row = [1, 2, 5.4, -6.6]; 

–  Command window: 
 
>> row = [1 2 5.4 -6.6] 
 
   row = 
        1.0000   2.0000    5.4000   -6.6000 

 

MATLAB Basics – Vectors  



8 

•  Column vectors 
–  Variables inserted between brackets and 

separated by semicolons 
 
>> column = [4;2;7;4]  
 

–  Command window: 
 
>> column = [4;2;7;4] 
 
   column = 
              4 
              2 
              7 
              4 

MATLAB Basics – Vectors  

•  You can tell the difference between a row and a 
column vector by: 
–  Looking in the workspace 
–  Displaying the variable in the command window 
–  Using the size function 

>> size(row)         >> size(column) 
 
   ans =                ans =  
        1     4              4    1 

•  To get a vector’s length, use the length function 
   >> length(row)         >> length(column) 

 
      ans =                  ans =  
            4                      4  

 

MATLAB Basics – Vectors  



9 

•  The transpose operator:  ‘ 
 >> x = [1 2 3];    >> y = [4; 5; 6]; 
>> x’    >> y’ 
   ans =           ans = 
        1          4   5   6  
  2     

   3 
•  Vectors can be created more effectively using the ‘colon’ operator  

or the ‘linspace’ function 
  >> z = 8:1:10 

 z =           
     8    9    10  

 
>> v = linspace(0,10,5) 
 v =  
     0   2.5000    5.0000    7.5000    10.0000 

MATLAB Basics – Vectors  

•  Addition and subtraction of vectors 
 >> x = [1 2 3];    >> y = [4; 5; 6]; 
>> x + 2   >> x + y 
   ans =           ans = 
     3  4  5      5   7   9     

•  Multiplication of vector elements 
  >> x*y 

 ??? Error using è mtimes           
 Inner matrix dimensions must agree  

    Here  we break the rules for matrix multiplications.   
If we meant to multiply the two vectors element by element, 
i.e. x(1)*y(1), we must use the special Matlab syntax ‘.*’ 

   >> x.*y              >> y.^2  
 ans =                ans =  
     4  10  18            16  25  36 

MATLAB Basics – Vectors  



10 

•  The dot product:  
 >> a = [1 2 3];   b = [4 5 6]; 
>> c = dot(a,b) 
c =                   
    32           

 

 

 

 

 

•  The cross product 
  >> d = cross(a,b) 

d =           
   -3   6   -3  

MATLAB Basics – Vectors  

The dot product of two vectors a = [a1, a2, ..., an] and b = [b1, b2, ..., bn] is defined as: 
 
 
 
 

  
 

The definition of the cross product  
can be represented as: 
 
 
 
This determinant can be computed  as 
 
 
   
 

•  Matrices 
–  You can make matrices like vectors, element by element 

 
>> a = [1 2; 3 4]  

 
–  Or by concatenating vectors and matrices  

(note that size matters! 
   >> a = [1 2];  
   >> b = [3 4];  
   >> c = [5;6];  
 
   >> d = [a;b];  
   >> e = [d c];  
   >> f = [[e e];[a b a]];   
 

MATLAB Basics – Matrices  



11 

MATLAB Basics – Matrices 

Matrix multiplication between: 
•  A matrix and a real number 

  

 
•  A matrix and a vector 

 
•  Two matrices 
 

MATLAB Basics – Matrices 

•  A matrix multiplies a vector 

 

Practice : 
θ = pi/6, m’=4, n’=2, calculate the value of [m,n]’ . 



12 

•  Matrix operations 
–  Matrix multiplication operator *  

  a*b 
 

–  Element-by-element 
multiplication can be carried out 
by using the dot together with 
the multiplication  

  a.*b 
  

–  The element by element 
operation can also be used 
together with division and 
exponentiation 
 
    

 

MATLAB Basics – Matrix operations 

 >> a = [2 3; 4 5]    
   ans =  
  2    3 
  4    5      

 >> b = [4 7; 9 6] 

    ans =  

   4    7 

   9    6 
>> a*b 
   ans =        
        35   32
  
  29   41     

 >> a.*b 

     ans =  
    8   21 

   45    6 
 

•  You can access individual 
elements, entire rows and 
columns, and subsets of 
matrices 
 
 
 

•  You can also modify 
elements in an existing matrix 
 
>> w(2,4)=13 
w =  
   1   2   3   4 
   5   6   7  13  
   9  10  11  12 

    
 

MATLAB Basics – Matrix operations 

>> w = [1 2 3 4; 5 6 7 8; 
9 10 11 12] 

ans =  
    1   2   3   4 
    5   6   7   8  
    9  10  11  12 

>> w(1,1) 

ans =  

      1 

>> w(3,:) 

ans =        
     9  10  11  12    

>> v = w(1:2,2:3) 

v =  
        2   3 

      6   7 
 



13 

MATLAB Basics – Matrices 

Matrix multiplication example: 
•  Beef pies cost $3 each 
•  Chicken pies cost $4 each 
•  Vegetable pies cost $2 each 
They are sold in 4 days: 
 
 
 
the value of sales for Monday is calculated as: 
•  Beef pie value + Chicken pie value + Vegetable pie value 
=  $3×13   + $4×8      + $2×6   = $83 
=  ($3, $4, $2) • (13, 8, 6) = $3×13 + $4×8 + $2×6   = $83 

 
Calculate how much sales the shop makes on each day in matrix operations. 

MATLAB Basics – Matrices 

Price	  
$3	  
$4	  
$2	  

No. of columns of the 1st matrix = No. of rows of the 2nd matrix 
What if the price vector is placed after the quantity matrix? 

co
lu

m
n 

row 



14 

•  The following matrix is defined 
 
 

 
 
•  Evaluate the following expressions without using MATLAB, 

then check your results with MATLAB 

1.  A = M([1,3], [2,4]) 
2.  B = M(:, [1,4:6]) 
3.  C = M([2,3], :)  

 

MATLAB Basics – Exercise 2 

•  A variable does not need to be a number.  We can assign a 
textstring to a variable 

         >> s1 = ‘Hello world!’;  % This is a comment 
    >> s2 = ‘My name is Bond, James Bond’; 

    >> s12 = [s1 s2]; 

    >> disp(s12)    % displays the s12 string 

 

•  The output from this will be 
 
    >> Hello World!  My name is Bond, James Bond 

 
    

MATLAB Basics – Strings 



15 

•  MATLAB is a very powerful tool for producing both 2D and 3D 
plots.  You may create and manipulate the plots interactively or 
by commands. 

•  MATLAB can offer a great number of different formats for 
exporting the plots (e.g. eps, pdf, jpeg) 

•  The simplest and most commonly used plotting command is 
plot(x,y), where x and y are simply vectors containing the x 
and y coordinates of a data set 

•  Example: 
         >> x = 0:0.1:20; 

    >> y = exp(-x/10).*sin(x); 
 >> plot(x,y), grid on, xlabel(‘x’),… 
 ylabel(‘f(x) = e^{-x/10} sin(x)’),… 

  title(‘A simple plot’) 
 
    

MATLAB Basics – Plotting 

•  The vectors containing 
the x and y data must 
have the same length 

•  The plot command can 
be used to plot multiple 
sets, e.g. 
plot(x1,y1,x2,y2) 

•  The dot-dot-dot (…) 
notation is used to 
indicate that the 
command line is 
broken into two lines 

•  ‘Grid on’displays 
the grid in the plot 

MATLAB Basics – Plotting 



16 

•  xlabel(‘My x-axis label’), ylabel(‘My y-axis 
label’), and the title(‘My title’) can be used to label 
the plot.  The labels must be enclosed by single quotes to denote 
the string format 

•  Legend(‘Data1’,’Data2’) is used to place a legend and 
label the data sets when you have multiple data sets in your plot 

•  You can specify line style and colour within the plot command 
e.g.  plot(x1,y1,’b-’,x2,y2,’r—’). 
This command would make the first data set a solid blue line, 
and the second data set a dashed red line. 

•  Common line styles and colours: 

MATLAB Basics – Plotting 

•  Plot properties can also be manipulated interactively by clicking the 
Show Plot Tools icon in the Figure Window toolbar 

 

•  Useful advice for producing good and informative plots 
–  Give your plot an informative title,  

e.g. title(‘Stress vs. strain of steel’) 
–  Label your axes and remember to include units where appropriate,  

e.g.  xlabel(‘Strain’), ylabel(‘Stress (Mpa)’) 
–  Use line colours and styles carefully so that multiple data sets can easily 

be distinguished, e.g. plot(x1,y1,’b-’,x2,y2,’r.-’) 
–  Remember to insert a legend  when you are plotting multiple data sets in 

one plot, e.g. legend(‘Carbon steel’, ‘Stainless steel’) 

MATLAB Basics – Plotting 



17 

•  MATLAB has many built-in plot types, and a easy way to get a quick 
overview of the different plot types is to select some variables in the 
Workspace Browser, click on the disclosure triangle next to the plot 
toolbar icon and select More plots… 

 

MATLAB Basics – Plotting 

Multiple plots in one Figure Window 
•  The subplot command can be used to display a number of different 

plots in a single Figure Window.   
•  The subplot command subplot(2,2,1) specifies that the 

window should be divided into to rows and two columns of plot, 
and selects the first subplot to plot into. 

•  Example: 
>> x = linspace(0,2*pi,50); 
>> subplot(2,2,1), plot(x,sin(x)), xlabel(‘x’), 
ylabel(‘sin(x)’); 

 >> subplot(2,2,2), plot(x,cos(x)), xlabel(‘x’), 
ylabel(‘cos(x)’); 

 >> subplot(2,2,3), plot(x,sin(2*x)), xlabel(‘x’), 
ylabel(‘sin(2x)’); 

 >> subplot(2,2,4), plot(x,sin(2*x)), xlabel(‘x’), 
ylabel(‘cos(2x)’); 

 

MATLAB Basics – Plotting 



18 

MATLAB Basics – Plotting 

This figure  
shows the  
results of the  
commands on  
the previous  
page 

MATLAB Basics – Plotting 

title    – set graph title 
xlabel    – set X-axis label 
ylabel    – set Y-axis label 
text    – text annotation 
gtext    – place text with mouse 
grid on/off  – set grid lines 
legend   – display legend 
axis    – control axis scaling and appearance 



19 

MATLAB Basics – Plotting 

t=0:0.1:10; 
y1=sin(t); 
y2=cos(t); 
plot(t,y1,'r',t,y2,'b--'); 
 
x=[1.7*pi;1.6*pi]; 
y=[-0.3; 0.7]; 
s=['sin(t)';'cos(t)']; 
 
text(x, y, s); % Add comment at (x,y) 
title('Sin and Cos');  % Title 
legend('sin','cos')  % Add legend 
xlabel('time') % the name of X-axis 
ylabel('sin & cos')  % the name of Y-axis 
grid on             % Add grid 
axis square         % set figure as a shape of square 

1.  Plot the following functions (choose your own appropriate range 
for x): 
a)  y = 1/x, with a blue dashed line 
b)  y = sin(x) cos(x), with a red dotted line 
c)  y = 2x2-3x+1, with red cross markers 
 Turn the grid on in all your plots, and remember to labelaxes and 
use a title 

2.  Given the following function 
 
 
plot s as a function of angle      when a = 1, b = 1.5, c = 0.3 and  
0 °<       < 360°  

MATLAB Basics – Exercise 3 



20 

Curve-fitting of data 
•  Fitting of data can be done in several ways with MATLAB.  One simple 

approach is by using the functions polyfit and polyval. 
  coeff = polyfit(xdata,ydata,n); 

 
•  Following this command, coeff will now be a vector containing the 

coefficients for the polynomial of best fit. xdata and ydata are 
vectors containing the independent and dependent variables, and n is 
the degree of the polynomial to be fitted. 

•  Example: 
>> coeff = polyfit(x,y,1); 
>> y_fit = polyval(coeff,x); 

 >> plot(x,y,r+,x,y_fit), grid on, xlabel(‘x-data’),… ylabel(‘y-
data’), title(‘Basic curve-fitting’),… 

 legend(‘Original data’,’Line of best fit’,’Location’,’SouthEast’) 

  

MATLAB Basics – Plotting 

MATLAB Basics – Plotting 

This figure  
shows the  
results of the  
commands on  
the previous  
page 



21 

3D-plotting using plot3 and surf 
•  MATLAB provides a number of built-in functions for producing different 

types of 3D plots. 
•  The 2D function plot becomes plot3(x,y,z) for plotting points 

and lines in 3D space 
 
>> t=0:pi/50:10*pi; 
>> plot3(sin(t),cos(t),t,… 
’r.’),grid on,xlabel(‘x’),… 
ylabel(‘y’),zlabel(‘z’),… 
title(‘3D helix’) 
 

MATLAB Basics – Plotting 

3D-plotting of surfaces and contours using surf and mesh 
•  Syntax of these functions: surf(x,y,z) and mesh(x,y,z) 
•  The function meshgrid must be used to define a grid of points which 

the surface will be plotted onto.  
 
>> x=[1 2 3 4]; 
>> y=[5 6 7]; 
>> [xx, yy] = meshgrid(x,y) 
xx =  
    1   2   3   4 
    1   2   3   4 
    1   2   3   4 
yy =  
    5   5   5   5 
    6   6   6   6 
    7   7   7   7 
 
     

MATLAB Basics – Plotting 



22 

•  Given the funtion 
where a = 3, c = 0.5, -1 < x < 1 and -1 < y < 1 
 

•  We use the function surf and mesh to plot this function 
>> x=linspace(-1,1,50); 
>> y=x; 
>> a=3 
>> c=0.5 
>> [xx, yy] = meshgrid(x,y); 
>> z = c*sin(2*pi*a*sqrt(xx.^2+yy.^2));  
>> surf(xx,yy,z), colorbar, xlabel(‘x’), ylabel(‘y’), 
zlabel(‘z’),title(‘f(x,y)=c sin(2 \pi a \surd(x^2+y^2))’) 
>> figure; 
>> mesh(xx,yy,z), colorbar, xlabel(‘x’), ylabel(‘y’), 
zlabel(‘z’), title(‘f(x,y)=c sin(2 \pi a \surd(x^2+y^2))’) 
     

MATLAB Basics – Plotting 

MATLAB Basics – Plotting 

surf function mesh function 



23 

1.  Plot the following 3D curves using 
the plot3 function 

a)  Spherical helix 
 
 
 
 
 
 
where c = 5 and 0 < t < 10π   

b)  Sine wave on a sphere 
 
 
 
 
where a = 10, b = 1, c = 0.3,  
and 0  < t < 2π 

MATLAB Basics – Exercise 4 

2.  Plot the following 3D curves using 
the surf function 

a)  Sine surface 
 
 
 
 
where 0 < u < 2π  and 0 < v < 2π  

b)  Elliptic torus 
 
 
 
 
 
where r1 = r2 = 0.5, t = 1.5,  
0 < u < 10π and 0 < v < 10π 

•  You can save your variables in the following way 
         >> save myFile a b f   

 >> save(‘myFile’, ‘a’, ‘b’, ‘f’) 

•  This command will save the variables (matrices) a, b and f to the file 
myFile.mat in your present working directory 

•  Include the full path of your file if you want to store the file in a 
particular directory 

•  You can remove variables from the environment by 
 >> clear a b f 

Now, the variables a, b and f will be gone from the workspace 
•  You can load variables back to the environment by  

 >> load myFile 
Now, if you look at the workspace, you will see that a, b and f are 
back 

 
    

MATLAB Basics – Saving variables 



24 

•  You can also save (or load) data in the ASCII format, e.g. if you want 
to use the data as input in another program (or if you want to 
process data from another program) 
 
         >> V=[3 16 -4 7];  % create a 1x4 vector 

 >> A=[6 -2 15; -6 8 11]; % create a 2x3 matrix 
 >> save –ascii myASCIIFile 

•  This file can now be opened by e.g. Notepad 

MATLAB Basics – Using I/O files 

•  Data can be opened through the Import Wizard.  This is the 
most flexible way of importing data, since you do not need to 
know the format of the data. 

•  You start the Import Wizard by selecting Import data in the File 
menu of the Command Window.   

•  The Import Wizard then opens a file selection window which 
shows all the data files recognized by the Wizard. 

•  The Wizard opens the selected file and displays a portion of the 
data in the file, for the user to identify the content, see next 
slide 
 

MATLAB Basics – Using I/O files 

Import wizard 



25 

•  The Wizard will try 
to process the data 

•  You will be asked 
to specify such 
things as column 
separator 

•  The final 
processed data will 
show up with a 
variable name in 
the Workspace 

MATLAB Basics – Using I/O files 

Import wizard 

•  Importing data from Excel is done with the xlsread command.  
In the simplest form we write the command 

 >> A=xlsread(‘input.xls’) 

•  If the Excel file has more than one sheet, data will be imported 
from the first sheet.   

•  To import data from an Excel file with several sheets, we can 
use 

 >> B=xlsread(‘input.xls’,’Sheet2’) 
•  Another option is to specify the parts of the sheet where the 

data should be gathered 
 >> C=xlsread(‘input.xls’,‘Sheet3’,‘C2:E5’) 

•  Now, (‘C2:E5’) is a 4 by 3 region consisting of rows 2,3,4 and 5 
and columns C,D and E 

MATLAB Basics – Using I/O files 

Reading from Excel files - xlsread 



26 

•  Exporting data from MATLAB to an Excel spreadsheet is done by 
using the xlswrite command.  In the simplest form this is  

  >> xlswrite(‘output.xls’,D) 
 where D is the variable name of the data we want to export to Excel.  

•  If we want to put the data in a particular sheet, we can use 
 >> xlswrite(‘output.xls’,D,’Sheet2’) 

 
•  And if we want to put the data in the variable D into a particular part 

in a particular sheet of the Excel file, we can use 
 >> xlswrite(‘output.xls’,D,‘Sheet3’,‘C2:E5’) 

 
•  Now, D must be a 4x3 matrix in order to it into the specified range 

(‘C2:E5’) 

MATLAB Basics – Using I/O files 

Writing to Excel files - xlswrite 

•  In the ‘save’ command you save all your previous MATLAB commands in a 
separate .mat file.  If you ‘load’ this file at a later stage, you will be back to 
the same situation as at the time of saving.   

•  MATLAB commands can also be stored in another format, the so-called      
m-files (extension .m). We can distinguish between two separate versions of 
the m-files.  
–  Script files 

Useful when you want to repeat a set of commands, and only want to change the 
value of some variables every time.  The variables will be available in the 
workspace after you have run the script file 

–  Function files 
In the function file, the variables are local to the function, and not available in the 
workspace after you have run the function file. 
A function file will always begin with a function definition line.  This specifies the 
input and output variables used in the function 

MATLAB Basics – Scripts and functions 



27 

•  A script file can be written in the editor window, and may be thought of as a small 
computer program.  You can build your own algorithms in a script file, and carry out 
almost any mathematical operation within the script. 

•  We strongly encourage to make use of the commenting options MATLAB allows for.  
In the present example, we have a script version of the ‘surf’ plot 

 
% my_surf.m          Script to plot a surface 

% Variables:   x, y   Vectors of ranges used to plot the function z 

%     a, c   Coefficients used in the function z 

%    xx, yy Matrices generated by meshgrid to defined points 

%    z      Definition of function to plot 

 

clear all;  clc;   %   Clear all variables and clear command window 

x = linspace(-1,1,50);  % create vector x 

y = x;                  % create vector y 

a = 3; c = 0.5;          

[xx, yy] = meshgrid(x,y);   % Generate xx & yy arrays for plotting 

z  = c*sin(2*pi*a*sqrt(xx.^2+yy.^2)); % Calculate z  

surf(xx,yy,z), xlabel(‘x’), ylabel(‘y’), zlabel(‘z’), …  

Title(‘f(x,y)=c sin(2 \pi a \surd (x^2+y^2))’)     % plots filled-in surface 

 

 

MATLAB Basics – Scripts 

•  A function always begins with a function definition line.  This line specifies the input 
and output variable that the function will use, and defines the name of the function. 

•  Below is an example of the definition of a function to calculate an area, and an 
example of how to apply the function in a small program (a ‘script’). 

•  Note that a script will make use of the variables found in the workspace, whereas a 
function will only make use of the variables entered as input to the function and the 
variables defined in the function itself 
 

Function area = calculateArea(x,y) 

% Function to calculate an area of a rectangle (x,y) 

% Variables:   x, y   lengths in two different directions 

%                area   the area of the rectangle 

Area = x*y;      %   Calculates area 

 

Commands in Command window: 
>> x = 5; y = 10; 

>> area = calculateArea(x,y) 

area =  

    50 

 

 

MATLAB Basics – Functions 

Alternatively: 
>> length1 = 25; length2 = 100; 
>> newArea = calculateArea(length1,length2) 
newArea =  
    2500 



28 

MATLAB Basics – Functions 

•  It is extremely useful to include comments in your MATLAB code.  This can explain 
what the code is supposed to do, and what the meaning of the different variables is.  A 
comment is preceded by a percent sign (%).  Anything placed after a percent sign on a 
line will not be executed.  

•  Script file names cannot contain spaces (replace spaces with e.g. an underscore), start 
with a number, be names of built-in functions or be variables names. 

•  It is a good idea to use the commands clear all and clc as the first commands in 
your script file.  This ensures that any confusion with existing variables is avoided.  

•  This will be further explored in next weeks session on MATLAB programming 
–  For loops 
–  While loops 
–  If-then-else loops 

MATLAB Basics – Scripts and functions 


