

MATLAB Basics

- · Useful commands
 - doc bring up the built-in documentation
 - help <cmd> for help with a command (e.g. help sqrt)
 - clc clears the command window
 - clear remove all variables from the workspace
 - close closes the current figure
 - pwd presemts working directory
 - dir or Is lists the current directory
 - what lists the MATLAB specific files
 - cd changes current directory
 - path or matlabpath lists the MATLAB search path
 - addpath adds a directory to the search path

HØGSKOLEN

Human code vs	MATLAB code
 Collect data from all students 	<pre>all_nam = { 'aa', 'bb', 'cc' } all_age = {21, 23, 27}</pre>
Sum all the ages	<pre>sum_age = sum(all_age)</pre>
 Divide by the number of students 	<pre>num_stud = length(all_age) average = sum_age/num_stud</pre>
HØGSKOLEN I ÅLESUND	

Scalar Variables:	>> a = 3; b=4;
Arithmetic operations:	>> c = a+b; d= c*b;
	>> sin(2*pi)+exp(-3/2)
	>> sind(90)
Exponentiation:	>> 4^2;
	>> (3+4*a)^2
Complicated expressions:	>> ((2+3)*b)^0.1
Multiplication is not implicit given by parantheses	>> 3(1+0.7) → gives error
Clear command window	>> clc

MATLA	B Basics – Matrix operatic	ons		
• Matr – M – E m b tt	ix operations latrix multiplication operator * a*b lement-by-element nultiplication can be carried out y using the dot together with ne multiplication a.*b	>>	a = [2 3; ans = 2 4 b = [4 7; ans = 4 9	4 5] 3 5 9 6] 7
– T o to e	he element by element peration can also be used ogether with division and xponentiation	>>	a*b ans = 35	32
COMMAND	DESCRIPTION	>>	29 a *b	41
*	Element-by-element multiplication Element-by-element division		ans = 8	21

You can access individual	
elements, entire rows and	>> w = [1 2 3 4; 5 6 7 8 9 10 11 12]
columns, and subsets of	ans =
matrices	1 2 3 4
	5 6 7 8
	>> w(1,1)
You can also modify	ans =
elements in an existing matrix	1
	>> w(3,:)
>> w(2,4)=13	ans =
W = 1 2 3 4	9 10 11 12
1 2 3 1	>> $v = w(1:2,2:3)$
$5 6 7 13 \\ 9 10 11 12 $	∨ =

• The following matrix is defined

	6	9	12	15	18	21
м —	4	4	4	4	4	4
	2	1	0	_1	-2	-3
	-6	_4	-2	0	2	4

 Evaluate the following expressions without using MATLAB, then check your results with MATLAB

```
1. A = M([1,3], [2,4])
2. B = M(:, [1,4:6])
3. C = M([2,3], :)
```

```
HØGSKOLEN
IÅLESUND
```


- xlabel('My x-axis label'), ylabel('My y-axis
 label'), and the title('My title') can be used to label
 the plot. The labels must be enclosed by single quotes to denote
 the string format
- Legend (`Data1', 'Data2') is used to place a legend and label the data sets when you have multiple data sets in your plot
- You can specify line style and colour within the plot command e.g. plot (x1, y1, 'b-', x2, y2, 'r-'). This command would make the first data set a solid blue line, and the second data set a dashed red line.
- Common line styles and colours:

		STRI	NG SPECIFIER	LINE COLOUR
STRING SPECIFIER	LINE STYLE	r		Red
_	Solid line (default)	g		Green
	Dashed line	b		Blue (default)
:	Dotted line	w		White
	Dash-dot line	k		Black

• MATLAB has many built-in plot types, and a easy way to get a quick overview of the different plot types is to select some variables in the Workspace Browser, click on the disclosure triangle next to the *plot* toolbar icon and select *More plots...*

MATLAB Basics – Exercise 4

MATLAB Basics – Scripts

- A script file can be written in the editor window, and may be thought of as a small computer program. You can build your own algorithms in a script file, and carry out almost any mathematical operation within the script.
- We strongly encourage to make use of the commenting options MATLAB allows for. In the present example, we have a script version of the `surf' plot

```
Script to plot a surface
% my_surf.m
                x, y Vectors of ranges used to plot the function z
% Variables:
                  a, c Coefficients used in the function z
8
응
                 xx, yy Matrices generated by meshgrid to defined points
&
                         Definition of function to plot
                  Z
clear all; clc; % Clear all variables and clear command window
x = linspace(-1,1,50); % create vector x
y = x;
                         % create vector y
a = 3; c = 0.5;
[xx, yy] = meshgrid(x,y); % Generate xx & yy arrays for plotting
z = c*sin(2*pi*a*sqrt(xx.^2+yy.^2)); % Calculate z
\texttt{surf}(xx,yy,z)\,, <code>xlabel(`x')</code>, <code>ylabel(`y')</code>, <code>zlabel(`z')</code>, ...
Title(f(x, y) = c \sin(2 \operatorname{pi} a \operatorname{surd} (x^2 + y^2))')
                                                      % plots filled-in surface
```


FUNCTION DEFINITION	FILENAME	INPUT VARIABLES	OUTPUT VARIABLES	NOTES
Eunction [rho, H, F] - motion(x, y, t)	motion.m	x, y, t	rho, H, F	
<pre>Eunction [theta] = angleTH(x, y)</pre>	angleTH.m	х, у	theta	
Eunction theta - THETA(x, y)	THETA.m	х, у	theta	If there is only one output variable the square brackets can be omitted
function [] = circle(r)	circle.m	r	None	
function circle(r)	circle.m	r	None	If there are no output variables the square brackets and the equals sign can be omitted

