
1

•  Structured programming

Programming in MATLAB

1.  Build a framework of your
data structure, e.g. by a flow
chart

–  to get an overview of what
data is required in the
various subparts of your
program

2.  Transform the flow chart to
a pseudo code

–  A further explanation of the
data flow in your program

3.  Write the MATLAB code

Programming in MATLAB

2

•  Structured programming
–  Decisions

• if … else structures
• switch structures

–  Loops
• for … end loops
• while … end loops

Programming in MATLAB

•  Decisions
–  if … else structures
–  switch structures

Structured programming

3

•  if … else structure
–  Execute a set of instructions if a logical condition is true.

if condition
 statements
end

–  Example:
A programme to evaluate whether a grade is passing the exam

function passing_exam(grade)
% Determines whether the grade is passing
% input: grade=numerical value of grade (0-100)
% output: Displayed message
if grade >= 60
 disp(‘Passing grade’)
end

Structured programming – Decisions

•  if … else structure
–  Example 2

A programme to evaluate the sign of a number

function sgn = my_sign(x)
% my_sign(x) returns 1 if x is greater than 0
% -1 if x is less than zero
% 0 if x is equal to zero
if x > 0
 sgn = 1;
elseif x < 0
 sgn = -1
else
 sgn = 0
end

Structured programming – Decisions

4

•  switch structure
–  This decisional structure is similar to the if … elseif structure, but

rather than testing individual conditions, the branching is based on
the value of a single test expression. Depending on the value of its
value, different blocks of code are implemented.

–  General syntax
switch testexpression
case value_1
 statements_1
case value_2
 statements_2
 …
 …
otherwise
 statement_otherwise
end

Structured programming – Decisions

•  Example 3
–  A small program to return a message depending on the value of the

string variable grade

grade = ‘B’;
switch grade
case ‘A’
 disp(‘Excellent’)
case ‘B’
 disp(‘Good’)
case ‘C’
 disp(‘Mediocre’)
case ‘D’
 disp(‘Whoops’)
otherwise disp(‘??’)
end

Structured programming – Decisions

5

•  Relational operators in MATLAB

Note in particular:

–  ~ (not) Performs a logical negation on an expression
 ~expression

–  & (and) Performs a logical conjunction on two expressions
 expression1 & expression2

–  | (or) Performs a logical disjunction on two expressions
 expression1 | expression2

Structured programming – Decisions

x == 0 Equal to
x ~= 0 Not equal to
x < 0 Less than
x > 0 Greater than
x <= 0 Less than or equal to
x >= 0 Greater than or equal to

•  Exercise
Create a code that, given an age, it checks whether you can buy
alcohol in Norway:
–  Age below 18 – Can not buy alcohol
–  Age between 18 and 20 – Can buy alcohol below 22%
–  Age above 20 – Can buy all kinds of alcohol in Norway

Structured programming

age = 20;
if age < 18
 disp(‘You are not allowed to buy alcohol’)
elseif age >= 18 & age < 20
 disp(‘You can buy alcohol below 22%’)
else
 disp(‘You can buy all sorts of alcohol’)
end

6

•  Loops
A structure to perform operations repetitively

Structured programming - Loops

•  Two types of loops exists
–  for … end Repeats statements a specific number of times
–  while … end Repeats statements as long as a logical condition

 is true
•  for … end structure; the general syntax is

 for index = start:step:finish
 statements
 end

•  while … end structure; the general syntax is

 while condition
 statements
 end

Structured programming - Loops

7

•  The for structure
This structure allows statements to be repeated a specific number of
times

 for i = 1:4
 i
 end

Pseudo code:

 “for i from 1 to 4”
 “show i”
 “stop”

Structured programming - Loops

1
2
3
4

Result à

•  Example 4
A simple function to calculate the fatcorial of a number

function fout = factor(n)
% factor(n)
% Computes the product of all the integres fom 1 to n
x = 1; % in order to provide the correct result of 0!
for i = 1:n

 x = x*i;
end
fout = x;

end

Structured programming - Loops

8

•  Exercise: Collect data from all students in a class.
–  Get names and age from all students
–  Sum all the ages
–  Find average age

•  MATLAB code:
% Collect names in the vector “all_names”
% Collect ages in the vector “all_age”
all_names = {‘aa’ ‘bb’ ‘cc’);
all_ages = [21 23 27];
sum_age = sum(all_ages);
num_stud = length(all_ages)
average = sum_age/num_stud

•  Who wants to explain the MATLAB code?

Structured programming - Loops

•  Exercise (cont)
For all students, find the number of days alive

•  Pseudo-code: get every age, multiply by the number of days in a year

•  MATLAB code:

 for i = 1_num_stud
 all_ages(i)*365;
 end

•  Who wants to explain this MATLAB code?
•  How can we save our number of days in another vector, e.g. called days
•  How can we calculate the average of days lived?

Structured programming - Loops

9

•  Loops and vectorization
The for loop is easy to implement and understand. However, for
MATLAB, this may be an inefficient way of representing data.

•  A cosine-function can be built with a for loop

 i = 0;
 for t = 0:0.02:50
 i = i + 1;

 y(i) = cos(t);
 end

•  A more efficient way to establish this is in the vectorized way

 t = 0:0.02:50;
 y = cos(t);

Structured programming - Loops

•  Loops to make many plots
The plot command can be used inside a loop to make several plots e.g. with
varying parameters.

•  Harmonic functions can be built with varying frequency

 t = 0:pi/10:10*pi;
 for w = 0.2:0.2:0.6
 y = cos(w*t);

 plot(t,y)
 hold on
 end

Structured programming - Loops

10

•  The while structure
 while condition
 statements
 end

The statements between the while and the end are repeated as long as the
conditions is true

•  A simple example

 x = 8;
 while x > 0
 x = x – 3;

 disp(x)
 end

Structured programming - Loops

•  We can also introduce a new element into the while loop, to stop the
repetition. This is called the while … break structure
 while (1)

 statements
 if condition, break, end
 statements
 end

•  A simple example

 x = 8;
 while (1)
 x = x – 5;

 if x < 0, break, end
 end

Structured programming - Loops

11

•  Exercise:
Find the number of days alive, using the while structure

•  Pseudo-code: While the number of remaining students is non-zero, get the
age of the next student, multiply by the number of days in a year, stop when
all students have been processed.

 i = 1;
 while i <= num_stud
 all_ages(i)*365

 i = i + 1;
 end

•  Who wants to explain the code?

Structured programming - Loops

•  Exercise:
For all students in a class, check if they are allowed to buy alcohol or not

•  Pseudo-code: For each of the students in the class, get the age of the
student, check his/her allowance wrt. buying alochol

Structured programming –
Combining decisions and loops

all_ages = [19, 20, 27, 22, 23, 25];
N=length(all_ages);
for i = 1:N
 if all_ages(i) < 18
 all_ages(i)
 disp(‘Not allowed to buy alcohol’)
 elseif all_ages(i) >=18 & all_ages(i) < 20
 all_ages(i)
 disp(‘Can buy alcohol below 22%’)
 else
 all_ages(i)
 disp(‘can buy all sorts of alcohol’)
 end
end

12

•  The code can be further modified:

Structured programming –
Combining decisions and loops

all_names={‘Per’, ‘Kari’, ‘Ola’, ‘Hans’,’Mari’}
all_ages = [17, 27, 19, 21, 25];
N1=length(all_names);
N2=length(all_ages);
if N1 ~= N2
 disp(‘Error in length of vectors’)
 fprintf(‘N1=%d and N2=%d \n’,N1,N2)
 return
end
underage=‘is not allowed to buy alcohol’;
beer_and_wine=‘can buy alochol below 22%’;
liqor=‘can buy all sorts of alcohol’;

•  …cont…

Structured programming –
Combining decisions and loops

for i = 1:N
 if all_ages(i) < 18
 status{i} = underage
 text = {char(all_names(i)),’ ‘,char(status{i})];
 disp(text)
 elseif all_ages(i) >=18 & all_ages(i) < 20
 status{i} = beer_and_wine
 text = {char(all_names(i)),’ ‘,char(status{i})];
 disp(text)
 else
 status{i} = liqor
 text = {char(all_names(i)),’ ‘,char(status{i})];
 disp(text)
 end
end

13

•  Use simple mechanical formulas

Simple mechanical problem – A cantilever beam

•  Problem at hand
–  Given a cantilever beam with length L
–  Select appropriate cross-section properties
–  Establish the deflection at the end of a cantilever beam when subject

to a point load P at the end
–  Define an acceptable deflection and compare whether the beam

meets the criterion or not
–  Calculate the maximum bending stress for the beam and check

whether the allowable stress is exceeded.
–  Yield stress of the material is σy = 355 MPa, use a material factor of
γ=1.3 to determine the allowable stress

Simple mechanical problem – A cantilever beam

14

•  Pseudo-code
–  Define a cross-section,

•  Height (H) and width (B)
•  Moment of inertia (I)

–  Define a beam length

–  Define a point load

–  Define a function which calculates the vertical displacement

–  Define a function which calculates the bending stress

Simple mechanical problem – A cantilever beam

B B

H

P

L

x

•  Pseudo-code cont.
–  Define an allowable deflection
–  Define the yield stress, the material factor and the allowable stress

•  Allowable stress is given as

–  Maximum stress is found at x = 0
•  Bending moment at x = 0 is given as
•  Moment of inertia of a rectangular cross-section is given as
•  Bending stress at x = 0 becomes

–  Compare the deflection with the allowable deflection
–  Compare the maximum stress in the beam with the allowable stress

Simple mechanical problem – A cantilever beam

15

•  MATLAB code

Simple mechanical problem – A cantilever beam

H=20; % Height (mm)
B=300; % Width (mm)
L=5000; % Length (mm)
P=800; % Point load (N)
E=2.1E5 % E-modul [MPa]
% Define allowable deflection
y_a=100; % (mm)
% Establish allowable stress
sigma_y=355; % Yield stress
gamma=1.3; % Material factor
sigma_a=sigma_y/gamma
%
y=def(P,L,E,H,B)
sigma=bending(P,L,H,B)

Own files (def.m and bending.m):

function [nedb]=def(Force,…
 Lbeam,Young,Height,Width)
 Inrt=Width*Height^3/12
 nedb = Force*Lbeam^3/…
 (3*Young*Inrt)
end

function [spenning] = …
 bending(Force,Lbeam,…
 Height,Width)
 Inrt=Width*Height^3/12
 spenning = Force*Lbeam*…
 Height/(2*Inrt)
end

•  This code can be
modifiied to test
a lot of options

Simple mechanical problem – A cantilever beam

H=10:10:200; % Height (mm)
B=100:100:1000; % Width (mm)
L=4000:500:10000; % Length (mm)
P=600:50:1200; % Point load (N)

%Loop over all variations
for i=1:length(H)
 for j=1:length(B)
 for k=1:length(L)
 for m=1:length(P)
 y(i,j,k,m)=…
 def(P(m),L(k),E,H(i),B(j))
 sigma(i,j,k,m)=…
 sigma(P(m),L(k),H(i),B(j))
 end
 end
 end
end

