Programming in MATLAB

 Structured programming

Structured Program
EXECUTIVE
MODEL

MODULE D

PUT GHAA.

INSERT CHAR.
INTO RECORD

ThisIs
the notation
for a decision

cnar This Is the
notaton

tor a loop

GET RECORD

EXTRACT CHAR. WRITE RECORD

. H@GSKOLEN

I ALESUND

Programming in MATLAB

1. Build a framework of your IO Essudocode

data structure, e.g. by a flow

chart

— to get an overview of what
data is required in the

various subparts of your Read X, Y, Z
program Compute Sum (S)as X+ Y+Z
S=X+Y+I ;
A=5/3 Compute Average (A) as S/ 3
P=XxYxZ Compute Product (P) as Xx Y x Z
2. Transform the flow chart to

Write (Display) the Sum, Average and Product
a pseudo code M e C iy

— A further explanation of the M

data flow in your program

Sto
3. Write the MATLAB code

. H@GSKOLEN

I ALESUND

Programming in MATLAB

 Structured programming

— Decisions
« if .. else structures
e switch structures
— Loops
e for .. end loops
e while .. end loops

. H@GSKOLEN

I ALESUND

Structured programming

* Decisions
- 1f .. else structures

Entry
Condition (1) Module Al
False

False

False
Module B

Exit

— switch structures

. H@GSKOLEN

I ALESUND

Structured programming — Decisions

e if .. else structure

— Execute a set of instructions if a logical condition is true.
if condition
statements
end

— Example:
A programme to evaluate whether a grade is passing the exam

function passing exam(grade)

Determines whether the grade is passing

input: grade=numerical value of grade (0-100)
output: Displayed message
f grade >= 60

disp (‘Passing grade’)
end

o\

H- o0 oo

. H@GSKOLEN

I ALESUND

Structured programming — Decisions

e 1if .. else structure

— Example 2
A programme to evaluate the sign of a number
function sgn = my sign(x)
my sign(x) returns 1 if x is greater than 0
-1 if x is less than zero

% 0 1if x is equal to zero
if x > 0
sgn = 1;
elseif x < 0
sgn = -1
else
sgn = 0
end

. H@GSKOLEN

I ALESUND

Structured programming — Decisions

switch structure
— This decisional structure is similar to the if ... elseif structure, but

rather than testing individual conditions, the branching is based on
the value of a single test expression. Depending on the value of its
value, different blocks of code are implemented.
General syntax
switch testexpression
case value 1
statements 1
case value 2
statements 2

otherwise
statement otherwise
end

HOGSKOLEN
I ALESUND

Structured programming — Decisions

Example 3
— A small program to return a message depending on the value of the

string variable grade

grade = ‘B’;
switch grade
case ‘A’

disp (‘Excellent’)
case ‘B’

disp (‘'Good’)
case ‘C’

disp (‘Mediocre’)
case ‘D’

disp (‘Whoops’)
otherwise disp('??’)
end

HOGSKOLEN

I ALESUND

Structured programming — Decisions

* Relational operators in MATLAB

X == Equal to

x ~= 0 Not equal to

x < 0 Less than

x > 0 Greater than

x <=0 Less than or equal to

x >= 0 Greater than or equal to

Note in particular:
— ~(not) Performs a logical negation on an expression
~exXpression
— & (and) Performs a logical conjunction on two expressions
expressionl & expression?

— | (or) Performs a logical disjunction on two expressions
expressionl | expression?2

. H@GSKOLEN

I ALESUND

Structured programming

+ Exercise
Create a code that, given an age, it checks whether you can buy
alcohol in Norway:
— Age below 18 — Can not buy alcohol
— Age between 18 and 20 — Can buy alcohol below 22%
— Age above 20 — Can buy all kinds of alcohol in Norway

age = 20;
if age < 18

disp(‘'You are not allowed to buy alcohol’)
elseif age >= 18 & age < 20

disp(‘'You can buy alcohol below 22%")
else

disp(‘'You can buy all sorts of alcohol’)
end

. H@GSKOLEN

I ALESUND

Structured programming - Loops

* Loops
A structure to perform operations repetitively

Previous code
Perform actions to be repeated
Yes

No % Is the condition true?

[:] Next code to run

m has
reached 3

. H@GSKOLEN

I ALESUND

Structured programming - Loops

« Two types of loops exists

- for .. end Repeats statements a specific number of times
- while .. end Repeats statements as long as a logical condition
is true

e for .. end structure; the general syntax is

for index = start:step:finish
statements
end

e while .. end structure; the general syntax is
while condition

statements
end

. H@GSKOLEN
| ALESUND

Structured programming - Loops

* The for structure
This structure allows statements to be repeated a specific number of
times

for 1 = 1:4
i Result -

end

Sw N

Pseudo code:

“for i from 1 to 4”
“show i”
“stop”

. H@GSKOLEN

I ALESUND

Structured programming - Loops

* Example 4
A simple function to calculate the fatcorial of a number

function fout = factor (n)
% factor(n)
% Computes the product of all the integres fom 1 to n

x = 1; % in order to provide the correct result of 0!
for 1 = 1:n
X = X*1i;
end
fout = x;
end

. H@GSKOLEN

I ALESUND

Structured programming - Loops

Exercise: Collect data from all students in a class.
— Get names and age from all students
— Sum all the ages
— Find average age

MATLAB code:
% Collect names in the vector “all names”
% Collect ages in the vector “all age”

all names = {‘aa’ ‘bb’ ‘cc’);
all ages = [21 23 27];
sum_age = sum(all ages);

num stud = length(all ages)
average = sum_age/num stud

Who wants to explain the MATLAB code?

HOGSKOLEN

I ALESUND

Structured programming - Loops

Exercise (cont)
For all students, find the number of days alive

Pseudo-code: get every age, multiply by the number of days in a year

MATLAB code:

for i = 1 num stud
all ages (i) *365;
end

Who wants to explain this MATLAB code?
How can we save our number of days in another vector, e.g. called days
How can we calculate the average of days lived?

HOGSKOLEN

I ALESUND

Structured programming - Loops

* Loops and vectorization
The for loop is easy to implement and understand. However, for
MATLAB, this may be an inefficient way of representing data.

* A cosine-function can be built with a for loop

i =0;
for t = 0:0.02:50
i=1+1;
y (1) = cos(t);
end

» A more efficient way to establish this is in the vectorized way
t = 0:0.02:50;

y = cos(t);

. H@GSKOLEN

I ALESUND

Structured programming - Loops

* Loops to make many plots
The plot command can be used inside a loop to make several plots e.g. with
varying parameters.

* Harmonic functions can be built with varying frequency

t = 0:pi/10:10%pi;

for w =0.2:0.2:0.6
y = cos(w*t);
plot (t,y)
hold on

end

. H@GSKOLEN
| ALESUND

Structured programming - Loops

¢ The while structure
while condition
statements
end
The statements between the while and the end are repeated as long as the
conditions is true

* A simple example

x = 8;
while x > 0
X = x - 33
disp (x)
end

. H@GSKOLEN

I ALESUND

Structured programming - Loops

* We can also introduce a new element into the while loop, to stop the
repetition. This is called the while .. break structure
while (1)
statements
if condition, break, end
statements
end

* A simple example

x = 8;
while (1)
x = x — 5;

if x < 0, break, end
end

. H@GSKOLEN

I ALESUND

10

Structured programming - Loops

Exercise:

Find the number of days alive, using the while structure

Pseudo-code: While the number of remaining students is non-zero, get the
age of the next student, multiply by the number of days in a year, stop when
all students have been processed.

i =1;

while 1 <= num stud
all ages (i) *365
i =14+ 1;

end

Who wants to explain the code?

HOGSKOLEN

I ALESUND

Structured programming —

Combining decisions and loops

Exercise:
For all students in a class, check if they are allowed to buy alcohol or not

Pseudo-code: For each of the students in the class, get the age of the
student, check his/her allowance wrt. buying alochol

all ages = [19, 20, 27, 22, 23, 25];
N=length (all ages);
for i = 1:N
if all ages(i) < 18
all ages (i)
disp (‘Not allowed to buy alcohol’)
elseif all ages (i) >=18 & all ages (i) < 20
all ages (i)
disp(‘Can buy alcohol below 22%’)
else
all ages (i)
disp(‘can buy all sorts of alcohol’)
end

end
HOGSKOLEN

I ALESUND

1

Structured programming —
Combining decisions and loops
* The code can be further modified:

all names={‘Per’, ‘Kari’, ‘0Ola’, ‘Hans’,’Mari’}
all ages = [17, 27, 19, 21, 25];
Nl=length(all names);
N2=length(all ages);
if N1 ~= N2
disp(‘Error in length of vectors’)
fprintf ('N1=%d and N2=%d \n’,N1,N2)
return
end
underage=‘is not allowed to buy alcohol’;
beer and wine=‘can buy alochol below 22%’;
ligor=‘can buy all sorts of alcohol’;

. H@GSKOLEN

I ALESUND

Structured programming —
Combining decisions and loops
e ...cont...

for 1 = 1:N
if all ages (i) < 18

status{i} = underage
text = {char(all names(i)),’ ‘,char(status{i})];
disp (text)

elseif all ages (i) >=18 & all ages (i) < 20
status{i} = beer and wine
text = {char(all names(i)),’ ‘,char(status{i})];
disp (text)

else
status{i} = ligor
text = {char(all names(i)),’ ‘,char(status{i})];
disp (text)

end

end

. H@GSKOLEN

I ALESUND

12

Simple mechanical problem — A cantilever beam

» Use simple mechanical formulas

Cross section Bending
Elementary equations for 7
uniform beams subjected to M =580c, 5=
bending: Vi
/ F 1={y*dA
7 |
b
//Ja I3
i 1=Lpns
al- |z 12
| 1
- =_bh?
b 6

. H@GSKOLEN

I ALESUND

Simple mechanical problem — A cantilever beam

* Problem at hand

— Given a cantilever beam with length L

— Select appropriate cross-section properties

— Establish the deflection at the end of a cantilever beam when subject
to a point load P at the end

— Define an acceptable deflection and compare whether the beam
meets the criterion or not

— Calculate the maximum bending stress for the beam and check
whether the allowable stress is exceeded.

— Yield stress of the material is o, =355 MPa, use a material factor of

v=1.3 to determine the allowable stress

. H@GSKOLEN

I ALESUND

Simple mechanical problem — A cantilever beam

Pseudo-code <

w

VRRRARRNY

* Moment of inertia (I)

e, 207
|

— Define a beam length z—> X
7
- /
— Define a point load 7
L
. . . . PL?
— Define a function which calculates the vertical displacement 0 = SET
. . . My(z)y
— Define a function which calculates the bending stress o, = — 7

HOGSKOLEN

I ALESUND

Simple mechanical problem — A cantilever beam

Pseudo-code cont.
— Define an allowable deflection

— Define the yield stress, the material factor and the allowable stress

. . a.
« Allowable stress is givenas o, = -

— Maximum stress is found at x =0

* Bending momentatx =01is givenas M =P-L .
B-H?
12

* Moment of inertia of a rectangular cross-fgftion is givenas =
6

* Bending stress at x =0 becomes o, = ——
g b BHQ

— Compare the deflection with the allowable deflection
— Compare the maximum stress in the beam with the allowable stress

HOGSKOLEN

I ALESUND

14

Simple mechanical problem — A cantilever beam

« MATLAB code

H=20; % Height (mm)
B=300; $ Width (mm)
L=5000; % Length (mm)
P=800; % Point load (N)
E=2.1E5 $ E-modul [MPa]

% Define allowable deflection
y a=100; % (mm)

% Establish allowable stress
sigma y=355; % Yield stress
gamma=1.3; % Material factor

Own files (def .m and bending.m):

function [nedb]=def (Force, ..
Lbeam, Young, Height, Width)
Inrt=Width*Height~3/12
nedb = Force*Lbeam”™3/..
(3*Young*Inrt)
end

function [spenning] = ..
bending (Force, Lbeam, ..

sigma a=sigma_y/gamma

o
°

y=def (P,L,E, H,B)
sigma=bending (P, L, H,B)

. H@GSKOLEN

I ALESUND

Height,Width)
Inrt=Width*Height"~3/12
spenning = Force*Lbeam*..

Height/ (2*Inrt)

end

Simple mechanical problem — A cantilever beam

* This code can be
modifiied to test
a lot of options

. H@GSKOLEN

I ALESUND

oe

H=10:10:200;
B=100:100:1000;
L=4000:500:10000;
P=600:50:1200;

Height (mm)
Width (mm)
Length (mm)
Point load (N)

o° oo

oo

%$Loop over all variations
for i=1:length (H)
for j=1:length (B)
for k=1l:1length (L)
for m=1l:1length (P)
v(i,J,k,m)=..
def (P(m),L(k),E,H(i),B(J))
sigma(i,j, k,m)=..
sigma (P (m),L(k),H(1i),B(J))
end
end
end

end

15

