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« Differential equations
« Numerical differentiation and integration
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Applications

» Mathematical methods

— Learning how mathematical models can be formulated on the basis
of scientific principles to simulate the behavior of a simple physical
system.

e Numerical methods

— Understanding how numerical methods afford a means to
generalize solutions in a manner that can be implemented on a
digital computer.

* Problem solving

— Understanding the different types of conservation laws that lie
beneath the models used in the various engineering disciplines and
appreciating the difference between steady-state and dynamic
solutions of these models.
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Mathematical modelling

The process of solving an engineering or physical problem

Engineering or Physical problems
(Description)

Mathematical Modeling
Approximation & Assumption

Common
Formulation or Governing features
Equations operation
Analytical & Numerical Methods
Computer

Solutions programming

Applications
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Differential Equations

Horizontal point
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Mathematical model — Function

Dependent _ ¥ independent — forcing
variable ~ 7| variables ’ P 1> functions

* Dependent variable - a characteristic that usually reflects
the behavior or state of the system

 Independent variables - dimensions, such as time and space,
along which the system’s behavior is being determined

* Parameters - constants reflective of the system’s properties
or composition

» Forcing functions - external influences acting upon the
system

I ALESUND

. H@GSKOLEN




Mathematical model — Function example

Upward force
due to air
resistance

Downward
force due
to gravity

Mathematical model — Function example

> You are asked to predict the velocity of a Upward force

due to air

bungee jumper as a function of time during resistance
the free-fall part of the jump

» Use the information to determine the length Y27
and required strength of the bungee cord for
jumpers of different mass u

» The same analysis can be applied to a falling
parachutist or a rain drop /

Downward
force due
to gravity

.
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Exercise using .m files

1. Make a MATLAB program to solve the problem with the
bungee jumper using the Euler’s method

2. Plot the development of the velocity as a function of time
with different time steps and compare with the exact
solution
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Mathematical model — Function example

» Newton’s second law Upward force
due to air
resistance

F=ma= down_Fup 1Fup
=mg - ¢’

(gravity minus air resistance)

» We have now applied the fundamental
physical laws to establish a mathematical lF
model for the forces acting down

Downward
force due
to gravity
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Mathematical model — Solving the equation

> Newton’s second law

mﬂ mg —c v’
dt g —C,
dv c,
— = __v
dt & m

» We have established an ordinary differential
equation (ODE) which has an analytical solution

v(t) = |7 tanh| £
¢, m
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Upward force
due to air
resistance

Fiop

leown

Downward
force due
to gravity

Mathematical model — Analytical solution

» In MATLAB, open the editor window and type

9.81; m =80 ; t = 20; cd = 0.25;
sqrt(g*m/cd) * tanh(sqrt(g*cd/m)*t)

g9
v

> Save the file as bungee jumper.m

» Type bungee jumper.m inthe command
window

» bungee jumper «— Type the name of the
v = script file

55.9268
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Upward force
due to air
resistance

F

up

leown

Downward
force due
to gravity




Exercise using .m files

% Matlab program for solving the bungee
jumper problem

J
% using Eulers method

9.81;m=68.1;cd=0.25;
0:0.5:20;

i

% The analytic solution

v=sqgrt (g*m/cd) *tanh (sqrt (g*cd/m) *t) ;
% Plotting of results

plot (t,v)

grid

title('Velocity for the bungee jumper')
legend('v (m/s)")
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Mathematical model — Numerical solution

» Whatif c;=c (v) = const?
» Solve the ODE numerically!

E=hmA_t

Av  v(t,,)-v(¢) .

dv Av 0z

True slope

At—0 dv/d

At
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Mathematical model — Numerical (approximate) solution

» Finite difference (Euler’s) method
ﬂ - ﬂ _ v(t;,,) —v(t;)
dt At t., -t

V(ti+1) - V(ti) _
ti+I - ti

C
8- _dv(ti)z
m

> Numerical solution

Upward force
due to air
resistance

Fip

C
v(t,'+1) = V(ti) + [g - Zd v(ti)z ](ti+1 - ti) Igr;reagﬁs

leown

Downward
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Mathematical model — Example: Hand calculations

Mass of bungee jumper: m = 68.1 kg
Drag coefficient: c;=0.25 kg/m

Gravity constant: =9.81 m/s?

Y V V V

Use Euler’s method to compute the
first 12 s of free fall

Upward force
due to air
resistance

Fio

t,=0; v(t,)=0

v(t,,)=v()+ [g - c;dv(ti)z ](ti+1 -

t.
' ) leown

Downward
force due
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Mathematical model — Example: Euler’s method

» Constant time increment of At=2s

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6

t=2s; v=0+|9.81- %(0)2](2 -0)=19.6200m /s
0.25 s
t=ds; v =19.6200+|9.81~ == (19.6200)° |(4 = 2) = 36.4317m | 5
0.25 s
£=65; v=364137 +|9.81~ = (364137)" (6~ 4) = 46.2983m 5
i 0.25 5]
t=85 v=462983+|9.81- = (46.2983) (8 - 6) = 50.1802m s

t=10s; v=50.1802 +

t=12s; v=51.3123 +

0.25

9.81- =
Y

(50.1802)°

(10 - 8) = 51.3123m/ s

(12 - 10) = 51.6008m | s

9.81- 025 51,3123y
68.1
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The solution accuracy depends on time increment

Mathematical model — Example: Bungee jumper

Upward force
due to air
resistance

Downward
force due
to gravity

60

40

v, m/s

20

Approximate,
numerical solution

Exact, analytical
solution

Terminal velocity
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Exercise using .m files

1. Make a MATLAB program to solve the problem with the
bungee jumper using the Euler’s method

2. Plot the development of the velocity as a function of time
with different time steps and compare with the exact
solution
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Exercise using .m files

% Matlab program for solving the for i = 1:n
% bungee jumper problem using dv = g-(cd/m) *v*abs (v) ;
% Eulers method v = v + dv*dt;
clear all V(i+l)=v;
g=9.81;m=80;cd=0.25; end
t0=0; tend=20; dt=0.5;vi=0; %% Plotting of results
t=t0:dt:tend; plot(t,vel,t,V,‘r.")
%% The analytic solution grid
vel=sqgrt (g*m/cd) *.. xlabel ("time (s)')

tanh (sgrt (g*cd/m) *t) ; ylabel ('velocity (m/s) ')
%% The numerical solution title('Velocity for the bungee
n =(tend-t0) /dt; jumper"')
ti=t0;v= vi; legend(‘analytical?,..
V(l)=v; "numerical’, 2)
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Exercise using .m files

o° oo oe°

cl
g=
t0
t=

ve

%%
n
ti
v (

Matlab program for solving the
bungee jumper problem using
Eulers method
ear all

9.81;m=80;cd=0.25;
=0; tend=20; dt=0.5;vi=0;
t0:dt:tend;

The analytic solution

l=sqgrt (g*m/cd) *..

tanh (sqrt (g*cd/m) *t) ;

The numerical solution

=(tend-t0) /dt
=t0;v= vi;
1)=v;
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for i = 1:n
dv = deriv(v,g,m,cd);
v = v + dv*dt;
V(i+l)=v;

end

%% Plotting of results

plot(t,vel,t,V,‘r.")

grid

xlabel ('time (s)')

ylabel ('velocity (m/s)"')

title('Velocity for the bungee

Jumper')
legend(‘analytical?,..

‘numerical’,2)

Exercise using .m files

deriv.m

function dv=deriv(v,g,m, cd)

dv = g -
end

HOGSKOLEN
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(cd/m) *v*abs (v) ;
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Mathematical model — Effect of chord

1 1 Upward f
» Free-falling bungee jumper BT fole
resistance
dv c
L ag-dy|y| Fup
dt m

» At the end of the chord, additional forces appear

| Gravitation ~ Drag force

dv v ey <k y
=g - V‘|V|—7(X—L)—fv Fdown
dt m . m m
4 Downward
force due
/ to gravity

[l rosskoLen Spring force Damping force
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Mathematical model — Effect of chord

» We must determine when the jumper \pwar i
reaches the end of the chord resistance
dr_ f-.
dt
» Hence, we have a system of two ODEs
dx
ax _y
dt leown
c k
gy K ey Ty b
dt m m m to gravity
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Mathematical model — System of two ODEs

» We have a system of two ODEs Upward force
ue to air
dT resistance
P {
dv cd o] k (o) »
—=qg— —vv|——(x—L)— —v
dt g m m m

» This can be written in the following form

y(1) =y(2) leown

e Cd ,, k Y )
2) = — — (2 N — — —_ — (2 D d
92) =9 = —u2)y2)] = —[y(1) = L] = —-u(2) 20UnwaR
to gravity
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Mathematical model — System of two ODEs

» In MATLAB syntax, we can write this as

dydt = [y (2);
g — sign(y(2))*cd/m*y(2)"2 - chord]

» If we make a new variable for the the extra force from
the chord

chord = k/m* (y(1)-L) + gamma/m*y (2)

» We can use one of the built-in ODE solvers in
MATLAB to solve the set of equations
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Mathematical model — System of two ODEs

Program for solving the bungee

o

function
% jumper problem with dynamics dydt=bungee dyn(t,y,L,cd,..
S m, k, gamma)
t0=0;tend=50; x0=0;v0=0; ?=§‘81; ?hOIQEO;h hord
L=30; cd=0.25; m=80; k=40; gamma=8; . Cc-crmine if the chor

% exerts a force

o

% Built-in solver if y(1) > L

[t,y]l=o0ded5 (@bungee dyn, [t0 tend],.. chord = k/m*(y(1)L)
+gamma/m*y (2) ;

[x0 v0], [1, L,cd,m,k,gamma) ;
end
% Plot of results dydt=[y (2) ;
plot(t,-y(:,1),"'-",t,y(:,2),"':") g-sign(y(2))*cd/m*y(2) "2
legend('x (m)','v (m/s)"') -chord];

%
]
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Eksempel fil — til hjelp med prosjektoppgava

r=[0,20]; %Dette er startverdien for r=[x,z
lagreX=[r(1l)]; %Startverdien for x = r(l) lagres i lagreX
lagreZ=[r(2)1];

deltat=0.01; %En ganske fornuftig verdi for deltat
v=[5,2]1; %Dette er utgangshastigheten.
a=[0,-5]; %Dette er startverdien for akselerasjonen
ztopp = 0; %Denne skal lagre maksimal z
while (r(2)>0) %Vi kjorer helt til vi treffer bakken
r=r+v*deltat; %Her endrer vi r-verdien som tidligere forklart.
v=v+a*deltat; $Her endrer vi v likedan.
a=[a(l), a(2) - 0.07]; %Her endres kun z-verdien av akselerasjonen.
lagreX=[lagreX, r(l)]; %Den nye x-verdien legges til lagreX-vektoren.

lagreZ=[lagreZ, r(2)];
if (v(2)>0)
ztopp = r(2); %Mens farten i z-retning er positiv, oppdaterer vi ztopp.
end
end
plot(lagraX, lagraZ) $Plotter punktene vi har funnet, og viser grafen.
disp(r (1)) %$Skriver ut x-verdien for punktet der objektet lander.
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Differential equations

* Question
— How can we solve a first-order differential equation of the form

d
Zx(0) = glx(0), ),
with the initial condition X(f) = Xo, if we cannot solve it analytically

+ Example
— We want to solve the ODE

d .
SiX(0) = cos(x(1)) + sin(1)

with x(0) = 0, i.e. we need to find the right function x(#) which fulfils
the ODE and the initial conditions (IC).
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Differential equations

* Given the initial condition x(0) = 0, we want to know x(z) for
t>0. We will now find an approximate numerical solution of
the exact solution by computing values of the function only at
discrete values of 7.

* To do so, we define a discrete set of t-values, called grid
points by
th=ty+nxh with n=0,1,2.3,....N.

* The distance between two adjacent grid points is 4. The largest
value is ty = to + N = h. Depending on the problem, ¢, might be
given and h is then determined by how many grid points N we

choose
v — [

N —1
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Differential equations

» The key is now to approximate the derivative of x(?) at a point
t, by
ax _ X(thgq) — x(t,,).

i 7 h> 0.

* We know that this relation is exact in the limit 2 = 0, since
x(t) 1s differentiable (according to the definition of the ODE).
For 4>0, however, the approximation above only takes into
account the current value of x(z) and the value at the next
(forward) grid point. Hence, the method is called a forward
difference approximation.
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Differential equations

* In the expression on the previous page, we approximate the
slope of the tangent line at t, (“the derivative”) by the slope of
the chord that connects the point (t,,x(t,)) with the point (t,
+1>X(t,+1))- This is illustrated in the figure below

35

30

25
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Differential equations

 Substituting the approximation for the derivative into the
ODE, we obtain
X(th+1) — X(tn)
h
* We can rearrange this equation and use the simpler notation
X, = X(t,), we get

~ cos(X(tn)) + sin(tn).

Xn.1 = Xn + h[cos(x,) + sin(ty)]

» This describes an iterative method to compute the values of
the function successively at all grid points ¢, (with 7,>0),
starting at #,=0 and x,=0 in our case.

This is called Euler’s method
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Differential equations

* For example, the value of x at the next grid point, #,=A, after
the starting point is
Xy = Xo+ h[cos(xo) + sin(ty)]
= 0+ h[cos(0) + sin(0)]
= h

* Similarly, we find at z,=2h
Xo = X1+ hlcos(xy) + sin(t)]
h+ hcos(h) + sin(h)] .

» It is now a matter of what value to choose for 4
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Differential equations

* In the corresponding Matlab code, we choose # = 0.001 and
N=10000, and so ¢,=10. Here is a plot of x(z), where the
discrete points have been connected by straight lines.

* Run the code yourself!
What happens to x,, when we decrease / by a factor of 10?
(Remember to increase N simultaneously by a factor of 10 in
order to obtain the same value for #,)
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Differential equations

* Accuracy
We see that the value of x,, depends upon the step size 4. In
theory a higher accuracy of the numerical solution in
comparison to the exact solution can be achieved by
decreasing /4 since our approximation of the derivative %X (1)
more accurate.

However, we cannot decrease / infinitely since, eventually,
we are hitting the limits set by the machine precision. Also,
lowering / requires more time steps, hence, more
computational time.
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Differential equations

» For Euler’s method it turns out that the global error (error at a

given ¢) is proportional to the step size 4 while the local error
(error per step) is proportional to #°. This is called a first-
order method.
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Differential equations

We can now summarize Euler’s method
Given the ODE
%X(t) = 9g(x(t),t) with x(f) = Xo,

we can approximate the solution numerically in the
following way:

Choose a step size &
2. Define grid points: ¢, = t,+n*h, with n=0,1,2,3,...,.N

3. Compute iteratively the values of the function at these
grid points: x, , ,=x,+h*g(x,t,). Start with n=0.

HOGSKOLEN
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Differential equations

* Instability

Apart from its fairly poor accuracy, the main problem with
Euler’s method is that it can be unstable, i.e. the numerical
solution can start to deviate from the exact solution in
dramatic ways. Usually, this happens when the numerical
solution grows large in magnitude while the exact solution
remains small

A popular example to demonstrate this feature is the ODE

dx ) B

g =X with x(0) = 1.
The exact solution is simply x(z) = e. It fulfils the ODE and
the initial condition.
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Differential equations

* On the other hand, our Euler methods reads

Clearly, if h>1, x(t,) will oscillate between negative and
positive numbers and grow without bounds in magnitude as ¢,
increases. We know that this is incorrect, since we know the
exact solution in this case.

On the other hand, when 0</<1, the numerical solution
approaches zero as t, increases, reflecting the behaviour of the
exact solution.

Therefore, we need to make sure that the step size of the Euler
method is sufficiently small so as to avoid such instabilities.
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