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Mathematical modelling 

•  Mathematical modelling 
•  Differential equations 
•  Numerical differentiation and integration 

•  Mathematical methods 

Applications 
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•  Mathematical methods 
–  Learning how mathematical models can be formulated on the basis 

of scientific principles to simulate the behavior of a simple physical 
system. 

•  Numerical methods 
–  Understanding how numerical methods afford a means to 

generalize solutions in a manner that can be implemented on a 
digital computer. 

•  Problem solving 
–  Understanding the different types of conservation laws that lie 

beneath the models used in the various engineering disciplines and 
appreciating the difference between steady-state and dynamic 
solutions of these models. 

Applications 

Mathematical modelling   

The process of solving an engineering or physical problem 

Common
features
operation

Applications

Solutions

Analytical & Numerical Methods

Formulation or Governing
Equations

Mathematical Modeling
 Approximation & Assumption

Engineering or Physical problems
(Description)

Computer  
programming 
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Differential Equations 

•  Dependent variable - a characteristic that usually reflects 
the behavior or state of the system 

•  Independent variables - dimensions, such as time and space, 
along which the system’s behavior is being determined 

•  Parameters - constants reflective of the system’s properties 
or composition 

•  Forcing functions - external influences acting upon the 
system 

Mathematical model – Function 

€ 

Dependent
variable = f independent

variables , parameters, forcing
functions
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Mathematical model – Function example  

Ø  You are asked to predict the velocity of a 
bungee jumper as a function of time during 
the free-fall part of the jump 

Ø  Use the information to determine the length 
and required strength of the bungee cord for 
jumpers of different mass 

Ø  The same analysis can be applied to a falling 
parachutist or a rain drop 

Mathematical model – Function example  
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Exercise using .m files 

1.  Make a MATLAB program to solve the problem with the 
bungee jumper using the Euler’s method 
 
 

2.  Plot the development of the velocity as a function of time 
with different time steps and compare with the exact 
solution 

 

 

 

 

 
 

  

Ø  Newton’s second law 
 

 F = ma = Fdown – Fup 
     = mg - cdv2  
  (gravity minus air resistance) 

 

Ø  We have now applied the fundamental 
physical laws to establish a mathematical 
model for the forces acting 

Mathematical model – Function example  

Fdown 

Fup 
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Ø  Newton’s second law 
 

  

 

Ø  We have established an ordinary differential 
equation (ODE) which has an analytical solution 

Mathematical model – Solving the equation 
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Fup 
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Ø  In MATLAB, open the editor window and type 
 

  

 

Ø  Save the file as bungee_jumper.m 

Ø  Type bungee_jumper.m in the command 
window 

Mathematical model – Analytical solution 

Fdown 

Fup 

g = 9.81; m = 80 ; t = 20; cd = 0.25; 

v = sqrt(g*m/cd) * tanh(sqrt(g*cd/m)*t) 

» bungee_jumper 

v = 

   55.9268 

Type the name of the  
script file 
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Exercise using .m files 

  % Matlab program for solving the bungee 
jumper problem 

 % using Eulers method 

 % 

 g=9.81;m=68.1;cd=0.25; 

 t=0:0.5:20; 

  

  % The analytic solution 
 v=sqrt(g*m/cd)*tanh(sqrt(g*cd/m)*t); 

  

  % Plotting of results 

 plot(t,v) 

 grid 

 title('Velocity for the bungee jumper') 

 legend('v (m/s)') 

 

Ø  What if cd = cd (v) ≠ const?   

Ø  Solve the ODE numerically! 
 

 
  

Mathematical model – Numerical solution 
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Assume constant slope (i.e, 
constant drag force) over Δt 
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Ø  Finite difference (Euler’s) method 

 

 

 

Ø  Numerical solution 
 

 
  

Mathematical model – Numerical (approximate) solution 
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Ø  Mass of bungee jumper: m = 68.1 kg 

Ø  Drag coefficient:  cd = 0.25 kg/m 

Ø  Gravity constant:  = 9.81 m/s2 

Ø  Use Euler’s method to compute the  
first 12 s of free fall 

 

 

 

 
 

  

Mathematical model – Example: Hand calculations 
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Ø  Constant time increment of Δt = 2 s 

 
  

Mathematical model – Example: Euler’s method 
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The solution accuracy depends on time increment 

Mathematical model – Example: Bungee jumper 
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Exercise using .m files 

1.  Make a MATLAB program to solve the problem with the 
bungee jumper using the Euler’s method 
 
 

2.  Plot the development of the velocity as a function of time 
with different time steps and compare with the exact 
solution 

 

 

 

 

 
 

  

Exercise using .m files 

% Matlab program for solving the  

% bungee jumper problem using  

% Eulers method 

clear all 

g=9.81;m=80;cd=0.25; 

t0=0; tend=20; dt=0.5;vi=0; 

t=t0:dt:tend; 

%% The analytic solution 

vel=sqrt(g*m/cd)*… 
tanh(sqrt(g*cd/m)*t); 

%% The numerical solution 

n =(tend-t0)/dt; 

ti=t0;v= vi; 

V(1)=v; 

for i = 1:n 

      dv = g-(cd/m)*v*abs(v); 

      v = v + dv*dt; 

      V(i+1)=v; 

end 

%% Plotting of results 

plot(t,vel,t,V,‘r.') 

grid 

xlabel('time (s)') 

ylabel('velocity (m/s)') 

title('Velocity for the bungee 
jumper') 

legend(‘analytical‘,… 
’numerical’,2) 
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Exercise using .m files 

% Matlab program for solving the  
% bungee jumper problem using  

% Eulers method 

clear all 

g=9.81;m=80;cd=0.25; 

t0=0; tend=20; dt=0.5;vi=0; 

t=t0:dt:tend; 

%% The analytic solution 

vel=sqrt(g*m/cd)*… 
tanh(sqrt(g*cd/m)*t); 

%% The numerical solution 

n =(tend-t0)/dt 

ti=t0;v= vi; 

V(1)=v; 

for i = 1:n 
      dv = deriv(v,g,m,cd); 
      v = v + dv*dt; 

      V(i+1)=v; 

end 

%% Plotting of results 

plot(t,vel,t,V,‘r.') 

grid 

xlabel('time (s)') 

ylabel('velocity (m/s)') 

title('Velocity for the bungee 
jumper') 

legend(‘analytical‘,… 

   ‘numerical’,2) 

 

Exercise using .m files 

 
 
function dv=deriv(v,g,m,cd) 
dv = g – (cd/m)*v*abs(v); 
end 
 

deriv.m 
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Ø  Free-falling bungee jumper 

Ø  At the end of the chord, additional forces appear 

 

 
 

  

Mathematical model – Effect of chord 
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Ø  We must determine when the jumper 
reaches the end of the chord 

Ø  Hence, we have a system of two ODEs 
 

 
  

Mathematical model – Effect of chord 
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Ø  We have a system of two ODEs 

 
Ø  This can be written in the following form 
 

 
  

Mathematical model – System of two ODEs 

Fdown 

Fup 

Ø  In MATLAB syntax, we can write this as 

 

Ø  If we make a new variable for the the extra force from 
the chord 

Ø  We can use one of the built-in ODE solvers in 
MATLAB to solve the set of equations 

Mathematical model – System of two ODEs 

dydt = [y(2);  
 g – sign(y(2))*cd/m*y(2)^2 – chord] 

chord = k/m*(y(1)-L) + gamma/m*y(2) 
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% Program for solving the bungee  
% jumper problem with dynamics 

% 

t0=0;tend=50; x0=0;v0=0; 

L=30; cd=0.25; m=80; k=40; gamma=8; 

 

% Built-in solver 

[t,y]=ode45(@bungee_dyn,[t0 tend],… 

 [x0 v0], [], L,cd,m,k,gamma); 

 

% Plot of results 

plot(t,-y(:,1),'-',t,y(:,2),':') 

legend('x (m)','v (m/s)') 

% 

  

 

Mathematical model – System of two ODEs 

function 
dydt=bungee_dyn(t,y,L,cd,… 
                m,k,gamma) 
g=9.81; chord=0; 
% determine if the chord  
% exerts a force 
 
if y(1) > L  
chord = k/m*(y(1)L)   
        +gamma/m*y(2); 
end 
 
dydt=[y(2);  
     g-sign(y(2))*cd/m*y(2)^2 
      -chord]; 
% 

 

r=[0,20];            %Dette er startverdien for r=[x,z] 
lagreX=[r(1)];       %Startverdien for x = r(1) lagres i lagreX 

lagreZ=[r(2)]; 

deltat=0.01;         %En ganske fornuftig verdi for deltat 

v=[5,2];             %Dette er utgangshastigheten. 

a=[0,-5];            %Dette er startverdien for akselerasjonen 

ztopp = 0;           %Denne skal lagre maksimal z 

while (r(2)>0)       %Vi kjorer helt til vi treffer bakken 

 r=r+v*deltat;       %Her endrer vi r-verdien som tidligere forklart. 

 v=v+a*deltat;       %Her endrer vi v likedan. 

 a=[a(1), a(2) - 0.07]; %Her endres kun z-verdien av akselerasjonen. 

lagreX=[lagreX, r(1)]; %Den nye x-verdien legges til lagreX-vektoren. 

lagreZ=[lagreZ, r(2)]; 

 if (v(2)>0) 

 ztopp = r(2); %Mens farten i z-retning er positiv, oppdaterer vi ztopp. 

 end 

end 

plot(lagraX, lagraZ) %Plotter punktene vi har funnet, og viser grafen. 

disp(r(1))           %Skriver ut x-verdien for punktet der objektet lander. 

Eksempel fil – til hjelp med prosjektoppgåva 
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•  Question 
–  How can we solve a first-order differential equation of the form 

 
 
with the initial condition                     if we cannot solve it analytically 

•  Example 
–  We want to solve the ODE 

 
 
 
with x(0) = 0, i.e. we need to find the right function x(t) which fulfils 
the ODE and the initial conditions (IC). 

Differential equations 

•  Given the initial condition x(0) = 0, we want to know x(t) for 
t>0.  We will now find an approximate numerical solution of 
the exact solution by computing values of the function only at 
discrete values of t. 

•  To do so, we define a discrete set of t-values, called grid 
points by 

•  The distance between two adjacent grid points is h. The largest 
value is                        Depending on the problem, tN might be 
given and h is then determined by how many grid points N we 
choose 

Differential equations 
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•  The key is now to approximate the derivative of x(t) at a point 
tn by 
 

 
•  We know that this relation is exact in the limit h à 0, since 

x(t) is differentiable (according to the definition of the ODE).  
For h>0, however, the approximation above only takes into 
account the current value of x(t) and the value at the next 
(forward) grid point.  Hence, the method is called a forward 
difference approximation. 

Differential equations 

•  In the expression on the previous page, we approximate the 
slope of the tangent line at tn (“the derivative”) by the slope of 
the chord that connects the point (tn,x(tn)) with the point (tn

+1,x(tn+1)).  This is illustrated in the figure below 

Differential equations 
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•  Substituting the approximation for the derivative into the 
ODE, we obtain 
 
 

•  We can rearrange this equation and use the simpler notation  
xn = x(tn), we get 

•  This describes an iterative method to compute the values of 
the function successively at all grid points tn (with tn>0), 
starting at t0=0 and x0=0 in our case.   
This is called Euler’s method 

Differential equations 

•  For example, the value of x at the next grid point, t1=h, after 
the starting point is 
 

 
•  Similarly, we find at t2=2h 

•  It is now a matter of what value to choose for h 

Differential equations 
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•  In the corresponding Matlab code, we choose h = 0.001 and 
N=10000, and so tN=10.  Here is a plot of x(t), where the 
discrete points have been connected by straight lines.   

 
 
 
 
•  Run the code yourself! 

What happens to xN when we decrease h by a factor of 10? 
(Remember to increase N simultaneously by a factor of 10 in 
order to obtain the same value for tN) 

Differential equations 

•  Accuracy 
We see that the value of xN depends upon the step size h. In 
theory a higher accuracy of the numerical solution in 
comparison to the exact solution can be achieved by 
decreasing h since our approximation of the derivative             
more accurate. 
 
However, we cannot decrease h infinitely since, eventually, 
we are hitting the limits set by the machine precision.  Also, 
lowering h requires more time steps, hence, more 
computational time. 

 
 
 

Differential equations 
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•  For Euler’s method it turns out that the global error (error at a 
given t) is proportional to the step size h while the local error 
(error per step) is proportional to h2.  This is called a first-
order method. 

Differential equations 

•  We can now summarize Euler’s method  
Given the ODE 
 
 
we can approximate the solution numerically in the 
following way: 
 
1.  Choose a step size h 
2.  Define grid points: tn = t0+n*h, with n=0,1,2,3,…,N 
3.  Compute iteratively the values of the function at these 

grid points: xn+1=xn+h*g(xn,tn).  Start with n=0. 

Differential equations 
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•  Instability 
Apart from its fairly poor accuracy, the main problem with 
Euler’s method is that it can be unstable, i.e. the numerical 
solution can start to deviate from the exact solution in 
dramatic ways. Usually, this happens when the numerical 
solution grows large in magnitude while the exact solution 
remains small 

•  A popular example to demonstrate this feature is the ODE 
 
 

•  The exact solution is simply x(t) = e-t.  It fulfils the ODE and 
the initial condition. 

Differential equations 

•  On the other hand, our Euler methods  reads  
 
 
Clearly, if h>1, x(tn) will oscillate between negative and 
positive numbers and grow without bounds in magnitude as tn 
increases.  We know that this is incorrect, since we know the 
exact solution in this case. 

•  On the other hand, when 0<h<1, the numerical solution 
approaches zero as tn increases, reflecting the behaviour of the 
exact solution. 

•  Therefore, we need to make sure that the step size of the Euler 
method is sufficiently small  so as to avoid such instabilities. 

Differential equations 


