
1

Mathematical modelling

•  Mathematical modelling
•  Differential equations
•  Numerical differentiation and integration

•  Mathematical methods

Applications

2

•  Mathematical methods
–  Learning how mathematical models can be formulated on the basis

of scientific principles to simulate the behavior of a simple physical
system.

•  Numerical methods
–  Understanding how numerical methods afford a means to

generalize solutions in a manner that can be implemented on a
digital computer.

•  Problem solving
–  Understanding the different types of conservation laws that lie

beneath the models used in the various engineering disciplines and
appreciating the difference between steady-state and dynamic
solutions of these models.

Applications

Mathematical modelling

The process of solving an engineering or physical problem

Common
features
operation

Applications

Solutions

Analytical & Numerical Methods

Formulation or Governing
Equations

Mathematical Modeling
 Approximation & Assumption

Engineering or Physical problems
(Description)

Computer
programming

3

Differential Equations

•  Dependent variable - a characteristic that usually reflects
the behavior or state of the system

•  Independent variables - dimensions, such as time and space,
along which the system’s behavior is being determined

•  Parameters - constants reflective of the system’s properties
or composition

•  Forcing functions - external influences acting upon the
system

Mathematical model – Function

€

Dependent
variable = f independent

variables , parameters, forcing
functions

⎛
⎝
⎜

⎞
⎠
⎟

4

Mathematical model – Function example

Ø  You are asked to predict the velocity of a
bungee jumper as a function of time during
the free-fall part of the jump

Ø  Use the information to determine the length
and required strength of the bungee cord for
jumpers of different mass

Ø  The same analysis can be applied to a falling
parachutist or a rain drop

Mathematical model – Function example

5

Exercise using .m files

1.  Make a MATLAB program to solve the problem with the
bungee jumper using the Euler’s method

2.  Plot the development of the velocity as a function of time
with different time steps and compare with the exact
solution

Ø  Newton’s second law

 F = ma = Fdown – Fup
 = mg - cdv2
 (gravity minus air resistance)

Ø  We have now applied the fundamental
physical laws to establish a mathematical
model for the forces acting

Mathematical model – Function example

Fdown

Fup

6

Ø  Newton’s second law

Ø  We have established an ordinary differential
equation (ODE) which has an analytical solution

Mathematical model – Solving the equation

Fdown

Fup

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= t

m
gc

c
mgtv d

d

tanh)(

2d

2
d

v
m
cg

dt
dv

vcmg
dt
dvm

−=

−=

Ø  In MATLAB, open the editor window and type

Ø  Save the file as bungee_jumper.m

Ø  Type bungee_jumper.m in the command
window

Mathematical model – Analytical solution

Fdown

Fup

g = 9.81; m = 80 ; t = 20; cd = 0.25;

v = sqrt(g*m/cd) * tanh(sqrt(g*cd/m)*t)

» bungee_jumper

v =

 55.9268

Type the name of the
script file

7

Exercise using .m files

 % Matlab program for solving the bungee
jumper problem

 % using Eulers method

 %

 g=9.81;m=68.1;cd=0.25;

 t=0:0.5:20;

 % The analytic solution
 v=sqrt(g*m/cd)*tanh(sqrt(g*cd/m)*t);

 % Plotting of results

 plot(t,v)

 grid

 title('Velocity for the bungee jumper')

 legend('v (m/s)')

Ø  What if cd = cd (v) ≠ const?

Ø  Solve the ODE numerically!

Mathematical model – Numerical solution

i1i

i1i

0t

tt
tvtv

t
v

t
v

dt
dv

−

−
=

Δ
Δ

Δ
Δ

=

+

+

→Δ

)()(

lim

Assume constant slope (i.e,
constant drag force) over Δt

8

Ø  Finite difference (Euler’s) method

Ø  Numerical solution

Mathematical model – Numerical (approximate) solution

Fdown

Fup

2
i

d

i1i

i1i

i1i

i1i

tv
m
cg

tt
tvtv

tt
tvtv

t
v

dt
dv

)()()(

)()(

−=
−

−

−

−
=

Δ
Δ

≅

+

+

+

+

)()()()(i1i
2

i
d

i1i tttv
m
cgtvtv −⎥⎦

⎤
⎢⎣

⎡
−+= ++

Ø  Mass of bungee jumper: m = 68.1 kg

Ø  Drag coefficient: cd = 0.25 kg/m

Ø  Gravity constant: = 9.81 m/s2

Ø  Use Euler’s method to compute the
first 12 s of free fall

Mathematical model – Example: Hand calculations

0tv0t

tttv
m
cgtvtv

00

i1i
2

i
d

i1i

==

−⎥⎦

⎤
⎢⎣

⎡
−+= ++

)(;

)()()()(
Fdown

Fup

9

Ø  Constant time increment of Δt = 2 s

Mathematical model – Example: Euler’s method

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6 sm6008511012312351
168
250819312351vs12t

sm312351810180250
168
250819180250vs10t

sm18025068298346
168
250819298346vs8t

sm29834646413736
168
250819413736vs6t

sm43173624620019
168
250819620019vs4t

sm620019020
168
2508190vs2t

2

2

2

2

2

2

/.)().(
.

... ;

/.)().(
.

... ;

/.)().(
.

... ;

/.)().(
.

... ;

/.)().(
.

... ;

/.)()(
.

.. ;

=−⎥⎦

⎤
⎢⎣

⎡ −+==

=−⎥⎦

⎤
⎢⎣

⎡ −+==

=−⎥⎦

⎤
⎢⎣

⎡ −+==

=−⎥⎦

⎤
⎢⎣

⎡ −+==

=−⎥⎦

⎤
⎢⎣

⎡ −+==

=−⎥⎦

⎤
⎢⎣

⎡ −+==

The solution accuracy depends on time increment

Mathematical model – Example: Bungee jumper

10

Exercise using .m files

1.  Make a MATLAB program to solve the problem with the
bungee jumper using the Euler’s method

2.  Plot the development of the velocity as a function of time
with different time steps and compare with the exact
solution

Exercise using .m files

% Matlab program for solving the

% bungee jumper problem using

% Eulers method

clear all

g=9.81;m=80;cd=0.25;

t0=0; tend=20; dt=0.5;vi=0;

t=t0:dt:tend;

%% The analytic solution

vel=sqrt(g*m/cd)*…
tanh(sqrt(g*cd/m)*t);

%% The numerical solution

n =(tend-t0)/dt;

ti=t0;v= vi;

V(1)=v;

for i = 1:n

 dv = g-(cd/m)*v*abs(v);

 v = v + dv*dt;

 V(i+1)=v;

end

%% Plotting of results

plot(t,vel,t,V,‘r.')

grid

xlabel('time (s)')

ylabel('velocity (m/s)')

title('Velocity for the bungee
jumper')

legend(‘analytical‘,…
’numerical’,2)

11

Exercise using .m files

% Matlab program for solving the
% bungee jumper problem using

% Eulers method

clear all

g=9.81;m=80;cd=0.25;

t0=0; tend=20; dt=0.5;vi=0;

t=t0:dt:tend;

%% The analytic solution

vel=sqrt(g*m/cd)*…
tanh(sqrt(g*cd/m)*t);

%% The numerical solution

n =(tend-t0)/dt

ti=t0;v= vi;

V(1)=v;

for i = 1:n
 dv = deriv(v,g,m,cd);
 v = v + dv*dt;

 V(i+1)=v;

end

%% Plotting of results

plot(t,vel,t,V,‘r.')

grid

xlabel('time (s)')

ylabel('velocity (m/s)')

title('Velocity for the bungee
jumper')

legend(‘analytical‘,…

 ‘numerical’,2)

Exercise using .m files

function dv=deriv(v,g,m,cd)
dv = g – (cd/m)*v*abs(v);
end

deriv.m

12

Ø  Free-falling bungee jumper

Ø  At the end of the chord, additional forces appear

Mathematical model – Effect of chord

Fdown

Fup || vv
m
dcg

dt
dv

−=

v
m

Lx
m
kvv

m
dcg

dt
dv γ

−−−⋅−=)(||

Gravitation Drag force

Spring force Damping force

Ø  We must determine when the jumper
reaches the end of the chord

Ø  Hence, we have a system of two ODEs

Mathematical model – Effect of chord

Fdown

Fup v
dt
dx

=

v
m

Lx
m
kvv

m
dcg

dt
dv

v
dt
dx

γ
−−−⋅−=

=

)(||

13

Ø  We have a system of two ODEs

Ø  This can be written in the following form

Mathematical model – System of two ODEs

Fdown

Fup

Ø  In MATLAB syntax, we can write this as

Ø  If we make a new variable for the the extra force from
the chord

Ø  We can use one of the built-in ODE solvers in
MATLAB to solve the set of equations

Mathematical model – System of two ODEs

dydt = [y(2);
 g – sign(y(2))*cd/m*y(2)^2 – chord]

chord = k/m*(y(1)-L) + gamma/m*y(2)

14

% Program for solving the bungee
% jumper problem with dynamics

%

t0=0;tend=50; x0=0;v0=0;

L=30; cd=0.25; m=80; k=40; gamma=8;

% Built-in solver

[t,y]=ode45(@bungee_dyn,[t0 tend],…

 [x0 v0], [], L,cd,m,k,gamma);

% Plot of results

plot(t,-y(:,1),'-',t,y(:,2),':')

legend('x (m)','v (m/s)')

%

Mathematical model – System of two ODEs

function
dydt=bungee_dyn(t,y,L,cd,…
 m,k,gamma)
g=9.81; chord=0;
% determine if the chord
% exerts a force

if y(1) > L
chord = k/m*(y(1)L)
 +gamma/m*y(2);
end

dydt=[y(2);
 g-sign(y(2))*cd/m*y(2)^2
 -chord];
%

r=[0,20]; %Dette er startverdien for r=[x,z]
lagreX=[r(1)]; %Startverdien for x = r(1) lagres i lagreX

lagreZ=[r(2)];

deltat=0.01; %En ganske fornuftig verdi for deltat

v=[5,2]; %Dette er utgangshastigheten.

a=[0,-5]; %Dette er startverdien for akselerasjonen

ztopp = 0; %Denne skal lagre maksimal z

while (r(2)>0) %Vi kjorer helt til vi treffer bakken

 r=r+v*deltat; %Her endrer vi r-verdien som tidligere forklart.

 v=v+a*deltat; %Her endrer vi v likedan.

 a=[a(1), a(2) - 0.07]; %Her endres kun z-verdien av akselerasjonen.

lagreX=[lagreX, r(1)]; %Den nye x-verdien legges til lagreX-vektoren.

lagreZ=[lagreZ, r(2)];

 if (v(2)>0)

 ztopp = r(2); %Mens farten i z-retning er positiv, oppdaterer vi ztopp.

 end

end

plot(lagraX, lagraZ) %Plotter punktene vi har funnet, og viser grafen.

disp(r(1)) %Skriver ut x-verdien for punktet der objektet lander.

Eksempel fil – til hjelp med prosjektoppgåva

15

•  Question
–  How can we solve a first-order differential equation of the form

with the initial condition if we cannot solve it analytically

•  Example
–  We want to solve the ODE

with x(0) = 0, i.e. we need to find the right function x(t) which fulfils
the ODE and the initial conditions (IC).

Differential equations

•  Given the initial condition x(0) = 0, we want to know x(t) for
t>0. We will now find an approximate numerical solution of
the exact solution by computing values of the function only at
discrete values of t.

•  To do so, we define a discrete set of t-values, called grid
points by

•  The distance between two adjacent grid points is h. The largest
value is Depending on the problem, tN might be
given and h is then determined by how many grid points N we
choose

Differential equations

16

•  The key is now to approximate the derivative of x(t) at a point
tn by

•  We know that this relation is exact in the limit h à 0, since

x(t) is differentiable (according to the definition of the ODE).
For h>0, however, the approximation above only takes into
account the current value of x(t) and the value at the next
(forward) grid point. Hence, the method is called a forward
difference approximation.

Differential equations

•  In the expression on the previous page, we approximate the
slope of the tangent line at tn (“the derivative”) by the slope of
the chord that connects the point (tn,x(tn)) with the point (tn

+1,x(tn+1)). This is illustrated in the figure below

Differential equations

17

•  Substituting the approximation for the derivative into the
ODE, we obtain

•  We can rearrange this equation and use the simpler notation
xn = x(tn), we get

•  This describes an iterative method to compute the values of
the function successively at all grid points tn (with tn>0),
starting at t0=0 and x0=0 in our case.
This is called Euler’s method

Differential equations

•  For example, the value of x at the next grid point, t1=h, after
the starting point is

•  Similarly, we find at t2=2h

•  It is now a matter of what value to choose for h

Differential equations

18

•  In the corresponding Matlab code, we choose h = 0.001 and
N=10000, and so tN=10. Here is a plot of x(t), where the
discrete points have been connected by straight lines.

•  Run the code yourself!

What happens to xN when we decrease h by a factor of 10?
(Remember to increase N simultaneously by a factor of 10 in
order to obtain the same value for tN)

Differential equations

•  Accuracy
We see that the value of xN depends upon the step size h. In
theory a higher accuracy of the numerical solution in
comparison to the exact solution can be achieved by
decreasing h since our approximation of the derivative
more accurate.

However, we cannot decrease h infinitely since, eventually,
we are hitting the limits set by the machine precision. Also,
lowering h requires more time steps, hence, more
computational time.

Differential equations

19

•  For Euler’s method it turns out that the global error (error at a
given t) is proportional to the step size h while the local error
(error per step) is proportional to h2. This is called a first-
order method.

Differential equations

•  We can now summarize Euler’s method
Given the ODE

we can approximate the solution numerically in the
following way:

1.  Choose a step size h
2.  Define grid points: tn = t0+n*h, with n=0,1,2,3,…,N
3.  Compute iteratively the values of the function at these

grid points: xn+1=xn+h*g(xn,tn). Start with n=0.

Differential equations

20

•  Instability
Apart from its fairly poor accuracy, the main problem with
Euler’s method is that it can be unstable, i.e. the numerical
solution can start to deviate from the exact solution in
dramatic ways. Usually, this happens when the numerical
solution grows large in magnitude while the exact solution
remains small

•  A popular example to demonstrate this feature is the ODE

•  The exact solution is simply x(t) = e-t. It fulfils the ODE and
the initial condition.

Differential equations

•  On the other hand, our Euler methods reads

Clearly, if h>1, x(tn) will oscillate between negative and
positive numbers and grow without bounds in magnitude as tn
increases. We know that this is incorrect, since we know the
exact solution in this case.

•  On the other hand, when 0<h<1, the numerical solution
approaches zero as tn increases, reflecting the behaviour of the
exact solution.

•  Therefore, we need to make sure that the step size of the Euler
method is sufficiently small so as to avoid such instabilities.

Differential equations

