
LOCAL AND GLOBAL STRESS ANALYSIS

SHIP DATA

- ▶ Draft: $D = \frac{\nabla}{L*B*CB*\rho}$
- ▶ Displacement: $\nabla = Lw + Dw$
- ► DAF = Dynamic Amplification Factor
- ► Stiffener distance = s
- ► Girder distance = I
- ▶ Normal stress: $\sigma = 160 MPa$

Local Strength of Bottom Plating

Pressure (N/mm^2): 0.0975509328358209

Stiffener

Section Modulus (cm^3): 156.8436092000933

Inertia (cm⁴): 1783

Profile (mm): 160x9

Girder

Section Modulus (cm³): 15492.307520988807

Plate

Plate Thickness (mm): 8.642189129637547

Equivalent Plate Thickness (mm): 10.699331986780404

Inertia (mm^4): 3547541842416.8228

Section Modulus (cm³): 506791.69177383184

LOCAL STRENGTH

- ▶ Pressure: $P = \rho * g * D * \frac{DAF}{1000}$
- Stiffener
 - ► Section Modulus: $Z = \frac{P*s*l^2}{12*\sigma} * \frac{1}{1000}$
 - Inertia and Profile from Table 1
- Girder
 - Section Modulus : $Z_g = \frac{P*l*B^2}{10*\sigma} * \frac{1}{1000}$
- Plate
 - ► Thickness: $t = \frac{s}{2} \sqrt{\frac{P}{\sigma}}$
 - Equivalent Thickness: $t_{eq} = t + \frac{A_{profile}}{s}$
 - ► Neutral Axis: $NA = \frac{L}{ST} * 2 * 1000$
 - ► Inertia: $I = \frac{l}{2} * t_{eq} * NA^2 * 2 + \frac{1}{12} \frac{L}{ST}^3 * t_{eq}$
 - Section Modulus: $Z_{plat} = \frac{I}{NA} * \frac{1}{1000}$

Ship Divisions (tanks): 8 Number of tanks with load: 4 Buoyancy (ton/m): 112.75 Lightweight Distributed (ton/m): 53.57142857142857

- ▶ Ship divisions: Ship equally divided in number of tanks (ST).
- ► Tanks with load: Paired number of tanks in each end of the ship (LT)
- ► $Bouyancy = \frac{\nabla}{L}$
- ► LW distributed = $\frac{LW}{L}$
- ► DW distributed = $\frac{DW}{L*\frac{LT}{ST}}$

GLOBAL STRENGTH DATA

Deadweight Distributed (ton/m): 118.35714285714286

The deadweight is distributed in the outer tanks in bow and stern.

Resulting Load

Load Full Tanks (ton/m): -59.17857142857143

Load Empty Tanks (ton/m): 59.17857142857143

Established conditions: Always hogging.

Maximum Force (N*m): 1657

Maximum Moment (MN*m): 463.96

DNV Rules

Wave Coefficient (Cw): 8.172273870249207

Stillwater Bending Moment (kN*m): 253606.91918153374

Wave Bending Moment (kN*m): 287097.917401594

Worst case scenario, seagoing condition.

GLOBAL STRENGTH DATA

Resulting load

- $ightharpoonup L_{full} = Buoyancy LW_d DW_d$
- $ightharpoonup L_{empty} = Buoyancy LW_d$
- Always hogging condition, loaded tanks on the sides of the ship
- $ightharpoonup F_{max}$ and M_{max} from applying resulting loads to the ship
- ► DNV rules
 - ► CW: Table in pag 53.
 - $M_{so} = C_w * L^2 * B * (0.1225 0.015 * Cb)$ Pag 69.
 - $M_{wo} = 0.19 * C_w * L^2 * B * Cb$ Pag 79

Strenght Evaluation

Stillwater Bending Moment (kN*m): 463960

Total Bending Moment (kN*m): 751057.917401594

Midship Section Modulus (cm³): 429175.9528009108

Conclusion: Plate holds

► Strength evaluation

- ► Comparison between DNV rules and values obtained in Resulting load
- Maximum value is used
- $ightharpoonup M_{tot} = M_{so} + M_{wo}$

$$ightharpoonup Z_{midship} = \frac{M_{tot}}{175}$$

- **▶** Conclusion
 - $Check: Z_{plat} > Z_{midship}$

GLOBAL STRENGTH DATA

► http://rules.dnvgl.com/docs/pdf/dnv/rulesship/2016-01/ts301.pdf

BIBLIOGRAPHY

Table B1 Wave coef	ficient C _W
L	$C_{\mathbf{W}}$
L ≤ 100	0.0792 L
100 < L < 300	10.75 - [(300 - L)/100] ^{3/2}
$300 \le L \le 350$	10.75
L > 350	10.75 - [(L - 350)/150] ^{3/2}

Profile (mm)	ion modulus Z for bulbprofile $\int (cm^d)$	Z (cm³)	Plate included (mm)
\$0 × 5 \$0 × 6 \$0 × 7 100 × 6 100 × 7 100 × 8 120 × 6 120 × 7 120 × 8 140 × 7 140 × 8 140 × 9	165 181 196 338 365 391 567 610 653 968 1 025 1 082	21 24 26 36 39 43 52 56 61 78 83 89	600×7
160 × 7 160 × 8 160 × 9 180 × 8 180 × 9 180 × 10 180 × 11 200 × 9 200 × 10 200 × 11 200 × 12 220 × 10 220 × 11 220 × 11 220 × 12 240 × 10 240 × 11 240 × 12 260 × 13 280 × 13 280 × 13 280 × 13 300 × 12 300 × 13 300 × 14	1 590 1 684 1 783 2 477 2 594 2 733 2 863 3 630 3 779 3 950 4 110 5 177 5 353 5 500 6 721 7 031 7 236 9 015 9 269 9 151 11 312 11 657 11 955 14 073 14 481 14 589 15 199	110 117 125 157 166 177 187 214 225 238 250 288 300 311 351 371 385 450 467 483 537 539 578 639 664 688 709	600×10
300 × 11 300 × 12 300 × 13 300 × 14 320 × 12 320 × 13 320 × 14 320 × 15 340 × 15 340 × 13 340 × 13 340 × 14 340 × 15	14 961 15 412 15 833 16 209 18 780 19 272 19 742 20 157 22 168 23 165 23 691 24 195	653 678 703 725 792 820 847 871 915 947 976 1 004	600 × 12